724
E[Xl(r, n, m, k)Xj(s, n, m, fc)] =
Cs-i
(r — l)!(s — r — l)!(m + 1)'
aV+JCs_ i
I + 1), s — r — 1,7S — 1)
i—1s-r-l
(3.9)
(r — l)!(s — r — l)!(m + l)s" ( s — r — 1 \
/3 > max(i,j) and i, j = 0,1,2,____
Proof: From (1.6), we have
(3.10)
g[jy'(r,>i,m,i;)XJ(ii,rt,m,fc)] = (r _ Jr- 1)1 J0 J xVlF(X)T f(x)
x9m_1(i;’W)[ftm(F(!/)) - hm(ii’(!i:))]'-r-1[łi(»)r'_1/(w)<łl/<fa. On expanding g^_1(ir’(a:)) binomially in (3.11), we get
(3.11)
.E[Xl(r, n, m, fc)XJ (s, n, m, fc)] = r- 1
(r — l)!(s — r — l)!(m + l)r_ Ji,j{m + u(m + 1), s — r — l,7s — 1).
Making use of the Lemma 3.2, we derive the relation in (3.10). Identity 3.1: For 7r,7s > 1, k > 1, 1 < r < s < n and m^-1
1 _ (s — r — l)!(m + l)s‘
7—«
Ilter+1 7>
(3.12)
rE E I-D”
Proof. At i = j = 0 in (3.10), we have Cs-i
/ r-1 \ / s — r — 1 \ 1
V U ) V v ) ls-vlr-u '
Now on using (2.13), we get the result given in (3.12).
At r = 0, (3.12) reduces to (2.13).
Special cases:
i) Putting m = 0, k — l in (3.10), the explicit formula for the product moments of order statistics of the type II exponentiated log-logistic distribution can be obtained as
[a(n - s + 1 + v) + p - O'//3)]
[a(n -r + \+u)+p + q-{(i + j)//3}]'