E[X(s,n,m, k)\X(r,n,m, k) = x] = a ^^(l//3)(p)[l + (x/a)0]p
p=o
.1 'Ir+j-p/aJ
if and only if
F(x) — (l + {^} ) , x > 0, a, a > 0, /? > 1.
Proof Prom (4.1), we have
Ca-1
E[X(s,n,m,k)\X(r,n,m,k) — x] — -
(s — r — 1)! Ci— i (m + l)s'
By setting u = = (£§/§)£) from C1-2) m (4-3)> we obtain
aCs-1
£J[X(s,n, m,/e)|X(r, n, m, fc) — x] = -
(s — r — l)!Cr-i (m + l)s-r
X f\{ 1+ (x/<T),’}t.-1/“ -
Jo
= +!)--■ S(1/«“11 +
Jo
Again by setting t = um+1 in (4.4), we get E[X(s,n,m,k)\X(r,n,m,k) = x]
t rn + l aCa-i
p—0
.. (m+l)*~T(ł-r) YĘZitir+j - (p/a))
and hence the relation in (4.2).
To prove sufficient part, we have from (4.1) and (4.2)
Cs-1
,m+l