/* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * AF_INET protocol family socket handler. * * Version: @(#)af_inet.c (from sock.c) 1.0.17 06/02/93 * * Authors: Ross Biro, <bir7@leland.Stanford.Edu> * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Florian La Roche, <flla@stud.uni-sb.de> * Alan Cox, <A.Cox@swansea.ac.uk> * * Changes (see also sock.c) * * A.N.Kuznetsov : Socket death error in accept(). * John Richardson : Fix non blocking error in connect() * so sockets that fail to connect * don't return -EINPROGRESS. * Alan Cox : Asynchronous I/O support * Alan Cox : Keep correct socket pointer on sock structures * when accept() ed * Alan Cox : Semantics of SO_LINGER aren't state moved * to close when you look carefully. With * this fixed and the accept bug fixed * some RPC stuff seems happier. * Niibe Yutaka : 4.4BSD style write async I/O * Alan Cox, * Tony Gale : Fixed reuse semantics. * Alan Cox : bind() shouldn't abort existing but dead * sockets. Stops FTP netin:.. I hope. * Alan Cox : bind() works correctly for RAW sockets. Note * that FreeBSD at least was broken in this respect * so be careful with compatibility tests... * Alan Cox : routing cache support * Alan Cox : memzero the socket structure for compactness. * Matt Day : nonblock connect error handler * Alan Cox : Allow large numbers of pending sockets * (eg for big web sites), but only if * specifically application requested. * Alan Cox : New buffering throughout IP. Used dumbly. * Alan Cox : New buffering now used smartly. * Alan Cox : BSD rather than common sense interpretation of * listen. * Germano Caronni : Assorted small races. * Alan Cox : sendmsg/recvmsg basic support. * Alan Cox : Only sendmsg/recvmsg now supported. * Alan Cox : Locked down bind (see security list). * Alan Cox : Loosened bind a little. * Mike McLagan : ADD/DEL DLCI Ioctls * Willy Konynenberg : Transparent proxying support. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */
while((skb=skb_dequeue(&sk->receive_queue))!=NULL) { /* * This will take care of closing sockets that were * listening and didn't accept everything. */ if (skb->sk != NULL && skb->sk != sk) { IS_SKB(skb); skb->sk->prot->close(skb->sk, 0); } IS_SKB(skb); kfree_skb(skb, FREE_READ); }
/* * We need to remove skb from the transmit queue, * or maybe the arp queue. */ if (skb->next && skb->prev) { IS_SKB(skb); skb_unlink(skb); } skb->dev = NULL; skb2 = skb->link3; kfree_skb(skb, FREE_WRITE); skb = skb2; } sk->send_head = NULL; sk->send_tail = NULL; sk->send_next = NULL; sti();
/* * Now the backlog. */
while((skb=skb_dequeue(&sk->back_log))!=NULL) { /* this should [almost] never happen. */ skb->sk = NULL; kfree_skb(skb, FREE_READ); }
/* * Now if it has a half accepted/ closed socket. */
if (sk->pair) { sk->pair->prot->close(sk->pair, 0); sk->pair = NULL; }
/* * Now if everything is gone we can free the socket * structure, otherwise we need to keep it around until * everything is gone. */
if (sk->rmem_alloc == 0 && sk->wmem_alloc == 0) { if(sk->opt) kfree(sk->opt); ip_rt_put(sk->ip_route_cache); /* * This one is pure paranoia. I'll take it out * later once I know the bug is buried. */ tcp_cache_zap(); sk_free(sk); } else { /* this should never happen. */ /* actually it can if an ack has just been sent. */ NETDEBUG(printk("Socket destroy delayed (r=%d w=%d)\n", sk->rmem_alloc, sk->wmem_alloc)); sk->destroy = 1; sk->ack_backlog = 0; release_sock(sk); reset_timer(sk, TIME_DESTROY, SOCK_DESTROY_TIME); } }
/* * The routines beyond this point handle the behaviour of an AF_INET * socket object. Mostly it punts to the subprotocols of IP to do * the work. */
static int inet_fcntl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk;
sk = (struct sock *) sock->data;
switch(cmd) { case F_SETOWN: /* * This is a little restrictive, but it's the only * way to make sure that you can't send a sigurg to * another process. */ if (!suser() && current->pgrp != -arg && current->pid != arg) return(-EPERM); sk->proc = arg; return(0); case F_GETOWN: return(sk->proc); default: return(-EINVAL); } }
/* * Set socket options on an inet socket. */
static int inet_setsockopt(struct socket *sock, int level, int optname, char *optval, int optlen) { struct sock *sk = (struct sock *) sock->data; if (level == SOL_SOCKET) return sock_setsockopt(sk,level,optname,optval,optlen); if (sk->prot->setsockopt==NULL) return(-EOPNOTSUPP); else return sk->prot->setsockopt(sk,level,optname,optval,optlen); }
/* * Get a socket option on an AF_INET socket. */
static int inet_getsockopt(struct socket *sock, int level, int optname, char *optval, int *optlen) { struct sock *sk = (struct sock *) sock->data; if (level == SOL_SOCKET) return sock_getsockopt(sk,level,optname,optval,optlen); if(sk->prot->getsockopt==NULL) return(-EOPNOTSUPP); else return sk->prot->getsockopt(sk,level,optname,optval,optlen); }
/* * Automatically bind an unbound socket. */
static int inet_autobind(struct sock *sk) { /* We may need to bind the socket. */ if (sk->num == 0) { sk->num = get_new_socknum(sk->prot, 0); if (sk->num == 0) return(-EAGAIN); udp_cache_zap(); tcp_cache_zap(); put_sock(sk->num, sk); sk->dummy_th.source = ntohs(sk->num); } return 0; }
/* * Move a socket into listening state. */
static int inet_listen(struct socket *sock, int backlog) { struct sock *sk = (struct sock *) sock->data;
if(inet_autobind(sk)!=0) return -EAGAIN;
/* We might as well re use these. */ /* * note that the backlog is "unsigned char", so truncate it * somewhere. We might as well truncate it to what everybody * else does.. * Now truncate to 128 not 5. */ if ((unsigned) backlog == 0) /* BSDism */ backlog = 1; if ((unsigned) backlog > SOMAXCONN) backlog = SOMAXCONN; sk->max_ack_backlog = backlog; if (sk->state != TCP_LISTEN) { sk->ack_backlog = 0; sk->state = TCP_LISTEN; } return(0); }
/* * Default callbacks for user INET sockets. These just wake up * the user owning the socket. */
/* * Create an inet socket. * * FIXME: Gcc would generate much better code if we set the parameters * up in in-memory structure order. Gcc68K even more so */
static int inet_create(struct socket *sock, int protocol) { struct sock *sk; struct proto *prot; int err;
sk = sk_alloc(GFP_KERNEL); if (sk == NULL) return(-ENOBUFS); memset(sk,0,sizeof(*sk)); /* Efficient way to set most fields to zero */ /* * Note for tcp that also wiped the dummy_th block for us. */ switch(sock->type) { case SOCK_STREAM: case SOCK_SEQPACKET: if (protocol && protocol != IPPROTO_TCP) { sk_free(sk); return(-EPROTONOSUPPORT); } protocol = IPPROTO_TCP; sk->no_check = TCP_NO_CHECK; prot = &tcp_prot; break;
case SOCK_DGRAM: if (protocol && protocol != IPPROTO_UDP) { sk_free(sk); return(-EPROTONOSUPPORT); } protocol = IPPROTO_UDP; sk->no_check = UDP_NO_CHECK; prot=&udp_prot; break;
case SOCK_RAW: if (!suser()) { sk_free(sk); return(-EPERM); } if (!protocol) { sk_free(sk); return(-EPROTONOSUPPORT); } prot = &raw_prot; sk->reuse = 1; sk->num = protocol; break;
case SOCK_PACKET: if (!suser()) { sk_free(sk); return(-EPERM); } if (!protocol) { sk_free(sk); return(-EPROTONOSUPPORT); } prot = &packet_prot; sk->reuse = 1; sk->num = protocol; break;
/* this is how many unacked bytes we will accept for this socket. */ sk->max_unacked = 2048; /* needs to be at most 2 full packets. */ sk->delay_acks = 1; sk->max_ack_backlog = SOMAXCONN; skb_queue_head_init(&sk->write_queue); skb_queue_head_init(&sk->receive_queue); sk->mtu = 576; sk->prot = prot; sk->sleep = sock->wait; init_timer(&sk->timer); init_timer(&sk->delack_timer); init_timer(&sk->retransmit_timer); sk->timer.data = (unsigned long)sk; sk->timer.function = &net_timer; skb_queue_head_init(&sk->back_log); sock->data =(void *) sk; sk->dummy_th.doff = sizeof(sk->dummy_th)/4; sk->ip_ttl=ip_statistics.IpDefaultTTL; if(sk->type==SOCK_RAW && protocol==IPPROTO_RAW) sk->ip_hdrincl=1; else sk->ip_hdrincl=0; #ifdef CONFIG_IP_MULTICAST sk->ip_mc_loop=1; sk->ip_mc_ttl=1; *sk->ip_mc_name=0; sk->ip_mc_list=NULL; #endif /* * Speed up by setting some standard state for the dummy_th * if TCP uses it (maybe move to tcp_init later) */
if (sk->num) { /* * It assumes that any protocol which allows * the user to assign a number at socket * creation time automatically * shares. */ put_sock(sk->num, sk); sk->dummy_th.source = ntohs(sk->num); }
if (sk->prot->init) { err = sk->prot->init(sk); if (err != 0) { destroy_sock(sk); return(err); } } return(0); }
/* * The peer socket should always be NULL (or else). When we call this * function we are destroying the object and from then on nobody * should refer to it. */
static int inet_release(struct socket *sock, struct socket *peer) { unsigned long timeout; struct sock *sk = (struct sock *) sock->data;
if (sk == NULL) return(0);
sk->state_change(sk);
/* Start closing the connection. This may take a while. */
#ifdef CONFIG_IP_MULTICAST /* Applications forget to leave groups before exiting */ ip_mc_drop_socket(sk); #endif /* * If linger is set, we don't return until the close * is complete. Otherwise we return immediately. The * actually closing is done the same either way. * * If the close is due to the process exiting, we never * linger.. */ timeout = 0; if (sk->linger) { timeout = ~0UL; if (!sk->lingertime) timeout = jiffies + HZ*sk->lingertime; } if (current->flags & PF_EXITING) timeout = 0;
sock->data = NULL; sk->socket = NULL;
sk->prot->close(sk, timeout); return(0); }
static int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sockaddr_in *addr=(struct sockaddr_in *)uaddr; struct sock *sk=(struct sock *)sock->data, *sk2; unsigned short snum = 0 /* Stoopid compiler.. this IS ok */; int chk_addr_ret;
/* * If the socket has its own bind function then use it. */
/* check this error. */ if (sk->state != TCP_CLOSE) return(-EIO); if(addr_len<sizeof(struct sockaddr_in)) return -EINVAL;
if(sock->type != SOCK_RAW) { if (sk->num != 0) return(-EINVAL);
snum = ntohs(addr->sin_port);
#ifdef CONFIG_IP_MASQUERADE /* * The kernel masquerader needs some ports */ if(snum>=PORT_MASQ_BEGIN && snum<=PORT_MASQ_END) return -EADDRINUSE; #endif
if (snum == 0) snum = get_new_socknum(sk->prot, 0); if (snum < PROT_SOCK && !suser()) return(-EACCES); }
chk_addr_ret = ip_chk_addr(addr->sin_addr.s_addr); #ifdef CONFIG_IP_TRANSPARENT_PROXY /* * Superuser may bind to any address to allow transparent proxying. */ if (addr->sin_addr.s_addr != 0 && chk_addr_ret != IS_MYADDR && chk_addr_ret != IS_MULTICAST && chk_addr_ret != IS_BROADCAST && !suser()) #else if (addr->sin_addr.s_addr != 0 && chk_addr_ret != IS_MYADDR && chk_addr_ret != IS_MULTICAST && chk_addr_ret != IS_BROADCAST) #endif return(-EADDRNOTAVAIL); /* Source address MUST be ours! */
#ifndef CONFIG_IP_TRANSPARENT_PROXY /* * Am I just thick or is this test really always true after the one * above? Just taking the test out appears to be the easiest way to * make binds to remote addresses for transparent proxying work. */ if (chk_addr_ret || addr->sin_addr.s_addr == 0) { #endif /* * We keep a pair of addresses. rcv_saddr is the one * used by get_sock_*(), and saddr is used for transmit. * * In the BSD API these are the same except where it * would be illegal to use them (multicast/broadcast) in * which case the sending device address is used. */ sk->rcv_saddr = addr->sin_addr.s_addr; if(chk_addr_ret==IS_MULTICAST||chk_addr_ret==IS_BROADCAST) sk->saddr = 0; /* Use device */ else sk->saddr = addr->sin_addr.s_addr; #ifndef CONFIG_IP_TRANSPARENT_PROXY } #endif if(sock->type != SOCK_RAW) { /* Make sure we are allowed to bind here. */ cli(); for(sk2 = sk->prot->sock_array[snum & (SOCK_ARRAY_SIZE -1)]; sk2 != NULL; sk2 = sk2->next) { /* * Hash collision or real match ? */
if (sk2->num != snum) continue;
/* * Either bind on the port is wildcard means * they will overlap and thus be in error */
if (!sk2->rcv_saddr || !sk->rcv_saddr) { /* * Allow only if both are setting reuse. */ if(sk2->reuse && sk->reuse && sk2->state!=TCP_LISTEN) continue; sti(); return(-EADDRINUSE); }
/* * Two binds match ? */
if (sk2->rcv_saddr != sk->rcv_saddr) continue; /* * Reusable port ? */
if (!sk->reuse) { sti(); return(-EADDRINUSE); }
/* * Reuse ? */
if (!sk2->reuse || sk2->state==TCP_LISTEN) { sti(); return(-EADDRINUSE); } } sti();
/* * Connect to a remote host. There is regrettably still a little * TCP 'magic' in here. */
static int inet_connect(struct socket *sock, struct sockaddr * uaddr, int addr_len, int flags) { struct sock *sk=(struct sock *)sock->data; int err; sock->conn = NULL;
if (sock->state == SS_CONNECTING && tcp_connected(sk->state)) { sock->state = SS_CONNECTED; /* Connection completing after a connect/EINPROGRESS/select/connect */ return 0; /* Rock and roll */ }
if (sock->state == SS_CONNECTING && sk->protocol == IPPROTO_TCP && (flags & O_NONBLOCK)) { if(sk->err!=0) return sock_error(sk); return -EALREADY; /* Connecting is currently in progress */ } if (sock->state != SS_CONNECTING) { /* We may need to bind the socket. */ if(inet_autobind(sk)!=0) return(-EAGAIN); if (sk->prot->connect == NULL) return(-EOPNOTSUPP); err = sk->prot->connect(sk, (struct sockaddr_in *)uaddr, addr_len); if (err < 0) return(err); sock->state = SS_CONNECTING; }
if (sk->state != TCP_ESTABLISHED &&(flags & O_NONBLOCK)) return(-EINPROGRESS);
cli(); /* avoid the race condition */ while(sk->state == TCP_SYN_SENT || sk->state == TCP_SYN_RECV) { interruptible_sleep_on(sk->sleep); if (current->signal & ~current->blocked) { sti(); return(-ERESTARTSYS); } /* This fixes a nasty in the tcp/ip code. There is a hideous hassle with icmp error packets wanting to close a tcp or udp socket. */ if(sk->err && sk->protocol == IPPROTO_TCP) { sock->state = SS_UNCONNECTED; sti(); return sock_error(sk); /* set by tcp_err() */ } } sti(); sock->state = SS_CONNECTED;
static int inet_recvmsg(struct socket *sock, struct msghdr *ubuf, int size, int noblock, int flags, int *addr_len ) { struct sock *sk = (struct sock *) sock->data;
if (sk->prot->recvmsg == NULL) return(-EOPNOTSUPP); if(sk->err) return sock_error(sk); /* We may need to bind the socket. */ if(inet_autobind(sk)!=0) return(-EAGAIN); return(sk->prot->recvmsg(sk, ubuf, size, noblock, flags,addr_len)); }
static int inet_sendmsg(struct socket *sock, struct msghdr *msg, int size, int noblock, int flags) { struct sock *sk = (struct sock *) sock->data; if (sk->shutdown & SEND_SHUTDOWN) { send_sig(SIGPIPE, current, 1); return(-EPIPE); } if (sk->prot->sendmsg == NULL) return(-EOPNOTSUPP); if(sk->err) return sock_error(sk); /* We may need to bind the socket. */ if(inet_autobind(sk)!=0) return -EAGAIN; return(sk->prot->sendmsg(sk, msg, size, noblock, flags));
}
static int inet_shutdown(struct socket *sock, int how) { struct sock *sk=(struct sock*)sock->data;
/* * This should really check to make sure * the socket is a TCP socket. (WHY AC...) */ how++; /* maps 0->1 has the advantage of making bit 1 rcvs and 1->2 bit 2 snds. 2->3 */ if ((how & ~SHUTDOWN_MASK) || how==0) /* MAXINT->0 */ return(-EINVAL); if (sock->state == SS_CONNECTING && sk->state == TCP_ESTABLISHED) sock->state = SS_CONNECTED; if (!sk || !tcp_connected(sk->state)) return(-ENOTCONN); sk->shutdown |= how; if (sk->prot->shutdown) sk->prot->shutdown(sk, how); return(0); }
static int inet_select(struct socket *sock, int sel_type, select_table *wait ) { struct sock *sk=(struct sock *) sock->data; if (sk->prot->select == NULL) { return(0); } return(sk->prot->select(sk, sel_type, wait)); }
/* * ioctl() calls you can issue on an INET socket. Most of these are * device configuration and stuff and very rarely used. Some ioctls * pass on to the socket itself. * * NOTE: I like the idea of a module for the config stuff. ie ifconfig * loads the devconfigure module does its configuring and unloads it. * There's a good 20K of config code hanging around the kernel. */
static int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk=(struct sock *)sock->data; int err; int pid;
switch(cmd) { case FIOSETOWN: case SIOCSPGRP: err=verify_area(VERIFY_READ,(int *)arg,sizeof(long)); if(err) return err; pid = get_user((int *) arg); /* see inet_fcntl */ if (current->pid != pid && current->pgrp != -pid && !suser()) return -EPERM; sk->proc = pid; return(0); case FIOGETOWN: case SIOCGPGRP: err=verify_area(VERIFY_WRITE,(void *) arg, sizeof(long)); if(err) return err; put_fs_long(sk->proc,(int *)arg); return(0); case SIOCGSTAMP: if(sk->stamp.tv_sec==0) return -ENOENT; err=verify_area(VERIFY_WRITE,(void *)arg,sizeof(struct timeval)); if(err) return err; memcpy_tofs((void *)arg,&sk->stamp,sizeof(struct timeval)); return 0; case SIOCADDRT: case SIOCDELRT: return(ip_rt_ioctl(cmd,(void *) arg)); case SIOCDARP: case SIOCGARP: case SIOCSARP: case OLD_SIOCDARP: case OLD_SIOCGARP: case OLD_SIOCSARP: return(arp_ioctl(cmd,(void *) arg)); case SIOCDRARP: case SIOCGRARP: case SIOCSRARP: #ifdef CONFIG_KERNELD if (rarp_ioctl_hook == NULL) request_module("rarp"); #endif if (rarp_ioctl_hook != NULL) return(rarp_ioctl_hook(cmd,(void *) arg)); case SIOCGIFCONF: case SIOCGIFFLAGS: case SIOCSIFFLAGS: case SIOCGIFADDR: case SIOCSIFADDR: case SIOCADDMULTI: case SIOCDELMULTI: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: case SIOCGIFMETRIC: case SIOCSIFMETRIC: case SIOCGIFMEM: case SIOCSIFMEM: case SIOCGIFMTU: case SIOCSIFMTU: case SIOCSIFLINK: case SIOCGIFHWADDR: case SIOCSIFHWADDR: case SIOCSIFMAP: case SIOCGIFMAP: case SIOCSIFSLAVE: case SIOCGIFSLAVE: return(dev_ioctl(cmd,(void *) arg));
case SIOCGIFBR: case SIOCSIFBR: #ifdef CONFIG_BRIDGE return(br_ioctl(cmd,(void *) arg)); #else return -ENOPKG; #endif
case SIOCADDDLCI: case SIOCDELDLCI: #ifdef CONFIG_DLCI return(dlci_ioctl(cmd, (void *) arg)); #endif
#ifdef CONFIG_DLCI_MODULE
#ifdef CONFIG_KERNELD if (dlci_ioctl_hook == NULL) request_module("dlci"); #endif
if (dlci_ioctl_hook) return((*dlci_ioctl_hook)(cmd, (void *) arg)); #endif return -ENOPKG;
if (sk->prot->ioctl==NULL) return(-EINVAL); return(sk->prot->ioctl(sk, cmd, arg)); } /*NOTREACHED*/ return(0); }
#ifdef CONFIG_IP_TRANSPARENT_PROXY /* * Some routines for the for loop in get_sock which sometimes needs to walk * two linked lists in sequence. Could use macros as well. * Does anyone know a nicer way to code this? */ static __inline__ struct sock *secondlist(unsigned short hpnum, struct sock *s, int *pfirstpass, struct proto *prot) { if (hpnum && s == NULL && (*pfirstpass)-- ) return prot->sock_array[hpnum & (SOCK_ARRAY_SIZE - 1)]; else return s; } static __inline__ struct sock *get_sock_loop_init(unsigned short hnum, unsigned short hpnum, struct sock *s, int *pfirstpass, struct proto *prot) { s = prot->sock_array[hnum & (SOCK_ARRAY_SIZE - 1)]; return secondlist(hpnum, s, pfirstpass, prot); } static __inline__ struct sock *get_sock_loop_next(unsigned short hnum, unsigned short hpnum, struct sock *s, int *pfirstpass, struct proto *prot) { s = s->next; return secondlist(hpnum, s, pfirstpass, prot); } #endif
/* * This routine must find a socket given a TCP or UDP header. * Everything is assumed to be in net order. * * We give priority to more closely bound ports: if some socket * is bound to a particular foreign address, it will get the packet * rather than somebody listening to any address.. */
struct sock *get_sock(struct proto *prot, unsigned short num, unsigned long raddr, unsigned short rnum, unsigned long laddr, unsigned long paddr, unsigned short pnum) { struct sock *s = 0; struct sock *result = NULL; int badness = -1; unsigned short hnum; #ifdef CONFIG_IP_TRANSPARENT_PROXY unsigned short hpnum; int firstpass = 1; #endif
/* * SOCK_ARRAY_SIZE must be a power of two. This will work better * than a prime unless 3 or more sockets end up using the same * array entry. This should not be a problem because most * well known sockets don't overlap that much, and for * the other ones, we can just be careful about picking our * socket number when we choose an arbitrary one. */
#ifdef CONFIG_IP_TRANSPARENT_PROXY for(s = get_sock_loop_init(hnum, hpnum, s, &firstpass, prot); s != NULL; s = get_sock_loop_next(hnum, hpnum, s, &firstpass, prot)) #else for(s = prot->sock_array[hnum & (SOCK_ARRAY_SIZE - 1)]; s != NULL; s = s->next) #endif { int score = 0;
#ifdef CONFIG_IP_TRANSPARENT_PROXY /* accept the addressed port or the redirect (proxy) port */ if (s->num != hnum && (hpnum == 0 || s->num != hpnum)) #else if (s->num != hnum) #endif continue;
if(s->dead && (s->state == TCP_CLOSE)) continue; /* local address matches? */ if (s->rcv_saddr) { #ifdef CONFIG_IP_TRANSPARENT_PROXY /* * If this is redirected traffic, it must either * match on the redirected port/ip-address or on * the actual destination, not on a mixture. * There must be a simpler way to express this... */ if (hpnum ? ((s->num != hpnum || s->rcv_saddr != paddr) && (s->num != hnum || s->rcv_saddr != laddr)) : (s->rcv_saddr != laddr)) #else if (s->rcv_saddr != laddr) #endif continue; score++; } /* remote address matches? */ if (s->daddr) { if (s->daddr != raddr) continue; score++; } /* remote port matches? */ if (s->dummy_th.dest) { if (s->dummy_th.dest != rnum) continue; score++; } /* perfect match? */ #ifdef CONFIG_IP_TRANSPARENT_PROXY if (score == 3 && s->num == hnum) #else if (score == 3) #endif return s; /* no, check if this is the best so far.. */ if (score <= badness) continue; #ifdef CONFIG_IP_TRANSPARENT_PROXY /* don't accept near matches on the actual destination * port with IN_ADDR_ANY for redirected traffic, but do * allow explicit remote address listens. (disputable) */ if (hpnum && s->num != hpnum && !s->rcv_saddr) continue; #endif result = s; badness = score; } return result; }
/* * Deliver a datagram to raw sockets. */
struct sock *get_sock_raw(struct sock *sk, unsigned short num, unsigned long raddr, unsigned long laddr) { struct sock *s;
#ifdef CONFIG_IP_MULTICAST /* * Deliver a datagram to broadcast/multicast sockets. */
struct sock *get_sock_mcast(struct sock *sk, unsigned short num, unsigned long raddr, unsigned short rnum, unsigned long laddr) { struct sock *s; unsigned short hnum;
hnum = ntohs(num);
/* * SOCK_ARRAY_SIZE must be a power of two. This will work better * than a prime unless 3 or more sockets end up using the same * array entry. This should not be a problem because most * well known sockets don't overlap that much, and for * the other ones, we can just be careful about picking our * socket number when we choose an arbitrary one. */
/* * Set the ARP module up */ arp_init(); /* * Set the IP module up */ ip_init(); /* * Set the ICMP layer up */ icmp_init(&inet_proto_ops); /* * Set the firewalling up */ #if defined(CONFIG_IP_ACCT)||defined(CONFIG_IP_FIREWALL)|| \ defined(CONFIG_IP_MASQUERADE) ip_fw_init(); #endif /* * Initialise the multicast router */ #if defined(CONFIG_IP_MROUTE) ip_mr_init(); #endif
/* * Initialise AF_INET alias type (register net_alias_type) */