Książka Repetytorium z matematyki dla studentów pierwszego roku jest podręcznikiem pomocniczym do przedmiotów matematycznych dla studentów pierwszego roku oraz maturzystów przygotowujących się do egzaminu maturalnego z matematyki dla poziomu rozszerzonego. Prezentuje ona te zagadnienia matematyczne z zakresu szkoły ponadgimnazjalnej, których znajomość jest potrzebna do rozumienia wykładu i ćwiczeń z przedmiotów matematycznych na studiach oraz na maturze z matematyki na poziomie rozszerzonym. Zagadnienia te w większości nie występują w standardach wymagań egzaminacyjnych dla egzaminu maturalnego na poziomie podstawowym. Pojawiają się one zaś w standardach wymagań egzaminacyjnych dla poziomu rozszerzonego. Dlatego też większość absolwentów szkół ponad-gimnazjalnych, którzy zostali przyjęci na pierwszy rok studiów pierwszego stopnia, nie posiada wiedzy i umiejętności z zakresu wspomnianych zagadnień. Sytuacja taka znacznie utrudnia, a czasami wręcz uniemożliwia tym absolwentom rozumienie treści matematycznych prezentowanych na zajęciach podczas studiów wyższych. Wskutek tego wzmiankowani absolwenci nie mogą aktywnie uczestniczyć w tych zajęciach i tym samym nie mogą osiągnąć oczekiwanych efektów uczenia się.
W opisywanej książce teorię ograniczono do niezbędnego minimum, w szczególności pominięto dowody twierdzeń i wzorów. Przedstawione przykłady ilustrują kluczowe pojęcia oraz zastosowania ważniejszych twierdzeń. Pierwszy rozdział książki omawia elementy logiki matematycznej. Drugi rozdział poświęcono elementom teorii mnogości. Trzeci rozdział przedstawia takie zagadnienia jak: silnia, symbol Newtona, dwumian Newtona, indukcja matematyczna. W czwartym rozdziale omówiono elementy rachunku wektorowego i geometrii analitycznej na płaszczyźnie. Następne rozdziały poświęcono na przedstawienie podstaw teorii funkcji oraz na omówienie poszczególnych klas funkcji elementarnych: funkcji trygonometrycznych, wielomianowych, wymiernych, wykładniczych i logarytmicznych. Zaprezentowano również metodykę rozwiązywania równań i nierówności z wartością bezwzględną. W następnej części podano krótki wstęp do teorii ciągów i ich granic. W kolejnym rozdziale zawarto elementy analizy matematycznej funkcji rzeczywistych jednej zmiennej rzeczywistej. Ostatni rozdział poświęcono elementom kombinatoryki i rachunku prawdopodobieństwa.