7884079689

7884079689



90

-    send starting parameters (Chemical composition and austenitising temperaturę) for neural network inputs,

-    nm appropriate neural network,

-    save results in to global table (Tab. 2).

These functions are run for every cooling ratę (140 cooling rates were implemented).

Table 2

Global data structures

Global table

Content

Klasyf, klasyp, klasyb. klasy m

Classifiers of transformations for all adopted cooling rates

Fstart, fkon, pstart. pkon, bstart, bkoiu mstart

Start and finish temperatures of transfonnations calculated by neural netwoiks for all adopted cooling rates

Fskon. fkkon. pskon. pkkon. bskon, bkkon, mskon

Start and finish temperatures of transfonnations after verification for all adopted cooling rates

Czasfsokr, czasfkokr, czaspsokr, czaspkokr. czasbsokr. czasbkokr. czasinsokr

Start and finish times of transformations for all adopted cooling rates

Biedy

Average errors values for the neural networks outputs

Procentfokr. procentpokr. procentfokr, procentmokr

Volume fractions of pliases for all adopted cooling rates

Hv

Calculated hardness of Steel for all adopted cooling rates

Acl, ac3, ta, bsmax, msmax

Characteristic temperatures values calculated by the neural networks

The calculations unit consists of 17 files with neural networks. Also the management file was implemented. This file contains the following algorithm:

-    send starting parameters (Chemical composition, austenitising temperaturę and values of classifiers) for neural network inputs

-    run appropriate neural network,

-    save results in to global table (Tab. 2).

Running order of the neural networks is very important. The order is as follows:

-    calculating the characteristic temperatures values (Acl, ac3, ta, bsmax, msmax),

-    calculating the values of tlie start and finish temperatures of transfonnations (ferritic, perlitic, bainitic, martensitic),

-    calculating the start and finish times of transformations,

-    calculating the hardness,

-    calculating the volume fractions of pliases.

The values calculated by neural networks rnust be verified, because in some cases the starting temperaturę of transformation can be lower than the finish temperaturę. Therefore a verification system was needed. For every temperaturę value calculated by neural networks a verifying function was implemented. These functions also save the results into global ta-bles (Fskon, fkkon, pskon, pkkon, bskon, bkkon, mskon in Tab. 2). Ali verification proce-dures are shown in Fig. 3.

BIBLIOTEKA CYFROWA POLITECHNIKI KRAKOWSKIEJ



Wyszukiwarka

Podobne podstrony:
89 The data input unit allows the user to input Chemical composition and austenitising temperaturę f
DSC01655 Tablica nr i / Tnblo No, I SKŁAD CHEMICZNY I WŁASNOŚCI WĘGLIKÓW SPIEKANYCH BAllDONlI CHEMIC
MSc in Chemical Technology, specialization: Composites and NanomaterialsPoznan University of
Bibliografia 305 of Differentiated Nitrogen Fertilization on Yields and Chemical Composition on Gree
192 192 Tubie 7.2 Physical, Chemical, mineralogical compositions and metals leachingbehavior (TCLP)
00165 ?010d5404608203a3dae9f6c233f640 166McWilliams specify constraints regarding the time during w
Bardzo ważnym parametrem obróbki jest czas austenityzowania, który wynosi 80 do 150 s i jest niezale
Changes in rotifer species composition and abundance along a trophic gradient in Loch Lomond, Scotla
92 Fig. 4. The results table for calculated CCT diagram of a Steel of the following Chemical composi
Information for Authors Send to:    Archives of Civil and Mechanical Engineering Poli
Tablica II. Mikroanaliza sktadu chemicznego osłony 1 Table II. The results of Chemical composition
SKRINING CHEMICZNY Określa się parametry chemiczne i fizyczne Wykrycie wszystkich metabolitów C
1iojil IZACAX 52 (44)CHEMICAL ENGINEERING AND EQUIPMENT PL ISSN 0368-0827 DWUMIESIĘCZNIK BIMONTHLY
IZACAX 52 (44) F CHEMICAL ENGINEERING AND EOUIPMENTUNIŻY NI II EH IIA II APARATURA CHEMICZNA PL

więcej podobnych podstron