Ćwiczenie nr. 121 Termometr oporowy i termopara MaÅ‚gorzata Nowina-Konopka, Andrzej ZiÄ™ba Cel ćwiczenia Wyznaczenie współczynnika temperaturowego oporu platyny. Pomiar charakterystyki termopary miedz-konstantan. Wprowadzenie Każda mierzalna wielkość fizyczna, która zmienia siÄ™ z temperaturÄ…, może zostać wy- korzystana do budowy termometru. W ćwiczeniu poznajemy dwa zjawiska umożliwiajÄ…ce pomiar temperatury metodami elektrycznymi. Oporność metali Zjawisko oporu elektrycznego w metalu jest wynikiem rozpraszania noÅ›ników prÄ…du elektronów. Rozpraszanie zakłóca ich uporzÄ…dkowany ruch w kierunku wyznaczonym przez przyÅ‚ożone pole elektryczne. Mechanika kwantowa uczy, że doskonale periodyczny ukÅ‚ad atomów nie rozprasza elektronów. W konsekwencji opór doskonaÅ‚ego krysztaÅ‚u, bez domieszek obcych atomów i bez dyslokacji, w temperaturze zera bezwzglÄ™dnego powinien zmaleć do zera1. W rzeczywistym metalu istniejÄ… dwa podstawowe mechanizmy rozpraszania elektro- nów, a wiÄ™c dwa zródÅ‚a opornoÅ›ci. 1. Rozpraszanie elektronów na drganiach termicznych sieci krystalicznej. W jÄ™zyku mechaniki kwantowej mówimy o zderzeniach elektronów z fononami czyli kwantami drgaÅ„ sieci krystalicznej. W wysokich temperaturach energia drgaÅ„ sieci, a wiÄ™c i liczba fononów jest proporcjonalna do temperatury bezwzglÄ™dnej T . Prawdopodo- bieÅ„stwo zderzenia elektronu z fononem, a w konsekwencji opór elektryczny sÄ… w grubym przybliżeniu wprost proporcjonalne do T . W niskich temperaturach liczba fononów szybko maleje do zera. W konsekwencji skÅ‚adnik oporu zwiÄ…zany z fononami również maleje do zera. Zależna od temperatu- ry i malejÄ…ca do zera w 0 K część oporu nosi nazwÄ™ oporu idealnego Ri. Nazwa bierze siÄ™ stÄ…d, że opór ten wystÄ™puje w każdym krysztale, również w idealnym krysztale bez domieszek i wad struktury. Rozpraszanie elektron-fonon jest głównym, lecz nie jedy- nym zródÅ‚em oporu idealnego. Mniejszy wkÅ‚ad wnosi rozpraszanie elektron-elektron, a w atomach pierwiastków magnetycznych takich jak Fe czy Mn rozpraszanie na momentach magnetycznych atomów. 2. Rozpraszanie na niedoskonaÅ‚oÅ›ciach sieci, które zaburzajÄ… jej periodyczność. SÄ… nimi obce atomy (zwÅ‚aszcza w stopach) i dyslokacje. Ta część oporu jest niezależna od temperatury i nosi nazwÄ™ oporu resztkowego, gdyż jest resztkÄ… oporu, która pozo- staje również w zerze bezwzglÄ™dnym (rys.1). W czystych pierwiastkach metalicznych oporność resztkowa jest maÅ‚a. Natomiast w stopach osiÄ…ga duże wartoÅ›ci (wiÄ™ksze od oporu idealnego), gdyż losowe rozmieszczenie różnych atomów w wÄ™zÅ‚ach sieci czyni jÄ… sieciÄ… nieperiodycznÄ…. Dlatego oporność stopów jest na ogół dużo wiÄ™ksza od opornoÅ›ci metali czystych i sÅ‚abo zależy od temperatury. 1 Faktu tego nie należy mylić ze zjawiskiem nadprzewodnictwa, które polega na tym, że w wielu metalach opór raptownie znika poniżej okreÅ›lonej temperatury rzÄ™du kilku kelwinów, również w przypadku obecnoÅ›ci w metalu dużej liczby obcych atomów i innych niedoskonaÅ‚oÅ›ci struktury. 1 Rysunek 1: Typowa zależność oporu metalu od temperatury DoÅ›wiadczalne prawo gÅ‚oszÄ…ce, że oporność wÅ‚aÅ›ciwa metalu jest sumÄ… opornoÅ›ci ide- alnej i opornoÅ›ci resztkowej Á(T ) = Ái(T ) + Áreszt, (121.1) nosi nazwÄ™ reguÅ‚y Matthiessena. Nie ma analitycznego wzoru, który mógÅ‚by opisać funkcjÄ™ R(T ) w peÅ‚nym zakresie temperatur. W maÅ‚ym zakresie temperatur, np. 0 ÷ 100ć%C, zależność R(T ) jest w przy- bliżeniu liniowa. Zależność liniowÄ… można opisać wzorem R(T ) = R0(1 + Ä…t), (121.2) ć% gdzie t oznacza temperaturÄ™ w C, natomiast R0 jest wartoÅ›ciÄ… opornoÅ›ci metalu w tempe- raturze 0ć%C. Współczynnik Ä… nazywamy temperaturowym współczynnikiem oporu, jego wartość zależy od rodzaju metalu. Zależność opornoÅ›ci metali od temperatury zostaÅ‚a wykorzystana do konstrukcji ter- mometrów oporowych. Pożądana jest odporność metalu na utlenianie i wpÅ‚yw temperatu- ry. Szczególne znaczenie majÄ… termometry oporowe platynowe, które umożliwiajÄ… pomiar temperatury w zakresie od kilkunastu K do okoÅ‚o 900 K. DziÄ™ki chemicznej obojÄ™tnoÅ›ci platyny wskazania termometru cechuje wyjÄ…tkowa dokÅ‚adność i stabilność w czasie. WadÄ… termometrów Pt sÄ… stosunkowo duże rozmiary sondy oraz konieczność stosowania ukÅ‚a- dów nieczuÅ‚ych na oporność doprowadzeÅ„. W zakresie temperatur helowych (4 K), gdzie oporność i napiÄ™cie termoelektryczne metali stajÄ… siÄ™ bardzo maÅ‚o czuÅ‚e na zmiany temperatury, szerokie zastosowanie znalazÅ‚ oporowy termometr wÄ™glowy. NapiÄ™cie termoelektryczne Utwórzmy obwód elektryczny z dwóch różnych metali (rys. 2a). Jeżeli caÅ‚y obwód znajduje siÄ™ w jednakowej temperaturze, to nie zaobserwujemy żadnego prÄ…du (przepÅ‚yw prÄ…du byÅ‚by pogwaÅ‚ceniem II zasady termodynamiki). Jeżeli jednak temperatury wzdÅ‚uż obwodu bÄ™dÄ… różne, wÅ‚Ä…czony w obwód galwanometr wykaże powstawanie różnicy poten- cjałów i przepÅ‚yw prÄ…du. DoÅ›wiadczenie wykazuje, że powstaÅ‚e napiÄ™cie termoelektryczne zależy wyÅ‚Ä…cznie od wartoÅ›ci temperatur na zÅ‚Ä…czach A i B oraz rodzaju metali tworzÄ…cych zÅ‚Ä…cze. Zjawisko powstawania siÅ‚y termoelektrycznej zostaÅ‚o wykorzystane do pomiaru tem- peratury za pomocÄ… tzw. termopar. TypowÄ… termoparÄ™ stanowiÄ… dwa metale zespawane w zÅ‚Ä…czu pomiarowym A. PozostaÅ‚e koÅ„ce, poÅ‚Ä…czone przewodami z miernikiem napiÄ™cia, 2 Rysunek 2: Schemat budowy termopary: a) zÅ‚ożonej z dwu metali; b) zawierajÄ…cej trzy metale stanowiÄ… zÅ‚Ä…cza odniesienia BB´ (rys. 2b), które należy utrzymywać w staÅ‚ej tempera- turze, na przykÅ‚ad 0ć%C. Zwróćmy uwagÄ™, że obecnie termopara skÅ‚ada siÄ™ co najmniej z trzech metali, gdyż przewody stanowiÄ… trzeci metal, a wewnÄ…trz miernika mogÄ… istnieć dalsze zÅ‚Ä…cza. NapiÄ™cie termoelektryczne jest jednak takie samo jak w przypadku zÅ‚Ä…cza dwóch metali (rys. 2a), o ile tylko obydwa zÅ‚Ä…cza odniesienia, B i B´, majÄ… tÄ™ samÄ… tem- peraturÄ™. FizycznÄ… przyczynÄ… wystÄ™powania napiÄ™cia termoelektrycznego jest powstanie na zÅ‚Ä…- czu dwóch metali kontaktowej różnicy potencjałów do kilku V, wynikajÄ…cej z różnej war- toÅ›ci energii Fermiego. Pomimo to w obwodzie o staÅ‚ej temperaturze prÄ…d nie pÅ‚ynie, gdyż suma napięć kontaktowych wzdÅ‚uż obwodu jest równa zeru. NapiÄ™cie kontaktowe w niewielkim stopniu zależy od temperatury, wiÄ™c gdy temperatury zÅ‚Ä…cz stanÄ… siÄ™ różne, równowaga napięć zostaje zachwiana i pojawi siÄ™ wypadkowe napiÄ™cie termoelektryczne CharakterystykÄ… termopary E(t) nazywamy zależność napiÄ™cia termoelektrycznego E od temperatury zÅ‚Ä…cza pomiarowego A w sytuacji, gdy drugie zÅ‚Ä…cze B (lub zÅ‚Ä…cza B i B´ w ukÅ‚adzie z rysunku 2b) utrzymujemy w 0ć%C. CharakterystykÄ™ termopary podaje siÄ™ w formie tabeli, wykresu, albo rozwiniÄ™cia w szereg potÄ™gowy E(T ) = a1t + a2t2 + a3t3 + . . . (121.3) W rozwiniÄ™ciu (121.3) nie ma wyrazu wolnego, gdyż gdy obydwa zÅ‚Ä…cza utrzymywane sÄ… w temperaturze 0ć%C (t = 0), napiÄ™cie termoelektryczne jest równe zeru. Współczynniki a1, a2, a3... wyznacza siÄ™ przez komputerowe dopasowanie wielomianu (3) do zmierzonej zależnoÅ›ci E(t). Liczba wyrazów potrzebna do odtworzenia charakte- rystyki termopary zależy od zakresu temperatury i dokÅ‚adnoÅ›ci pomiaru. W przypadku maÅ‚ego zakresu temperatur rzÄ™du kilkudziesiÄ™ciu stopni może okazać siÄ™, że wystarcza wyraz liniowy E(T ) = a1t. (121.4) Zastosowanie termopar pozwala na wykonywanie pomiarów temperatury w szerokim zakresie siÄ™gajÄ…cym od 4 K do 2000 K. ZÅ‚Ä…cze pomiarowe termopary może być wykonane z cienkich drucików, posiada wtedy znikomÄ… pojemność cieplnÄ… i krótki czas reakcji na zmianÄ™ temperatury. Wygodnym sposobem pomiaru niewielkich napięć termoelektrycz- nych (rzÄ™du kilku mV) jest zastosowanie woltomierza cyfrowego. WadÄ… termopary (w porównaniu z termometrem oporowym) jest konieczność utrzymywania zÅ‚Ä…cza odniesie- nia w staÅ‚ej temperaturze i nieco mniejsza dokÅ‚adność. W zakresie 77 ÷ 600 K najczęściej stosowana jest termopara miedz-konstantan, cha- rakteryzujÄ…ca siÄ™ stosunkowo dużą wartoÅ›ciÄ… napiÄ™cia termoelektrycznego. Dla zakresu 4 ÷ 77 K stosuje siÄ™ specjalne stopy, gdyż zwykÅ‚e termopary posiadajÄ… 3 zbyt maÅ‚Ä… czuÅ‚ość. Dla wysokich temperatur stosuje siÄ™ ukÅ‚ady metali trudno topliwych i odpornych na utlenienie. PrzykÅ‚adowo, termopara Pt-Pt0.90Rh0.10 umożliwia pomiary do 1800 K. W praktyce zÅ‚Ä…cze odniesienia czÄ™sto znajduje siÄ™ w temperaturze pokojowej t0, różnej od 0ć%C. W tym przypadku woltomierz wskazuje U = E(t) - E(t0). (121.5) Dla uzyskania wartoÅ›ci E(t) należy w tym przypadku zmierzyć temperaturÄ™ zÅ‚Ä…cza odniesienia t0 innym termometrem (np. rtÄ™ciowym) i do zmierzonej wartoÅ›ci napiÄ™cia do- dawać staÅ‚Ä… poprawkÄ™ E(t0), odczytanÄ… z charakterystyki termopary. Literatura PodrÄ™czniki fizyki ciaÅ‚a staÅ‚ego (patrz ćwicz. 122) Massalski J.: Fizyka dla inżynierów. T.I., Warszawa, WNT 1975 Aparatura W skÅ‚ad zestawu pomiarowego (rys. 3) wchodzÄ… niżej wymienione przyrzÄ…dy. Termometr platynowy w postaci oporowej spirali z drutu platynowego osadzonej w rurce ceramicznej. OsÅ‚ona z cienkiego drutu zabezpiecza rurkÄ™ przed uszkodzeniem. KoÅ„- ce spirali platynowej sÄ… doprowadzone do odpowiednich zacisków osadzonych na pÅ‚ytce. Do pÅ‚ytki przymocowane jest mieszadeÅ‚ko, przez otwór w pÅ‚ytce wkÅ‚ada siÄ™ termometr. Termopara wykonana z drutów miedzianego i konstantanowego o maÅ‚ej Å›rednicy (0, 2 mm). Stosowanie drutów o maÅ‚ej Å›rednicy jest zwiÄ…zane z zapobieganiem odprowadza- niem ciepÅ‚a z obiektu, którego temperatura jest mierzona. W celu zabezpieczenia przed uszkodzeniem zÅ‚Ä…cze pomiarowe i zÅ‚Ä…cze odniesienia znajdujÄ… siÄ™ w szklanych rurkach poÅ‚Ä…czonych wężykiem z polietylenu. Zimny koniec termopary umieszczono w termosie wypeÅ‚nionym mieszaninÄ… wody i lodu, a gorÄ…cy w kocioÅ‚ku z wodÄ…. KocioÅ‚ek z wodÄ… jest ogrzewany prÄ…dem sieciowym, którego napiÄ™cie reguluje siÄ™ au- totransformatorem. Multimetr cyfrowy sÅ‚uży do pomiaru opornoÅ›ci. NapiÄ™cie termopary mierzy siÄ™ wolto- mierzem cyfrowym, a w przypadku jego braku multimetrem. Rysunek 3: UkÅ‚ad pomiarowy 4 Wykonanie ćwiczenia 1. Zestawić ukÅ‚ad pomiarowy wedÅ‚ug rysunku 3. Uwaga. Aby uzyskać temperaturÄ™ odniesienia 0ć%C, zÅ‚Ä…cze termopary musi znaj- dować siÄ™ w otoczeniu topniejÄ…cych kawaÅ‚ków lodu (do lodu dolewamy maÅ‚Ä… ilość wody). W przypadku mieszaniny dużej iloÅ›ci wody i maÅ‚ej lodu, lód pÅ‚ywa przy powierzchni, natomiast w pobliżu dna temperatura może wzrosnąć do kilku stopni powyżej 0ć%C! Zjawisku temu sprzyja anomalna rozszerzalność cieplna wody. Wskutek wiÄ™kszej gÄ™stoÅ›ci wody w pobliżu dna nie powstaje konwekcja cieczy, która mogÅ‚aby doprowadzić do wyrównania temperatury w naczyniu. 2. Zmierzyć wartoÅ›ci E i R dla temperatury pokojowej. 3. WÅ‚Ä…czyć grzanie kocioÅ‚ka, podnoszÄ…c napiÄ™cie na autotransformatorze do wartoÅ›ci (100÷180)V. Nie dajemy peÅ‚nego napiÄ™cia 220V, by uniknąć zbyt szybkiego grzania wody. 4. MieszajÄ…c caÅ‚y czas wodÄ™, odczytywać wskazania termometru, omomierza i wolto- mierza co 5ć%C, wpisać te dane do tabeli pomiarów. 5. Przerwać grzanie, gdy temperatura osiÄ…gnie 95ć%C. Opracowanie wyników 1. Wykonać wykres R(t) dla platyny. 2. MetodÄ… najmniejszych kwadratów znalezć parametry prostej. Nanieść jÄ… na wykres. 3. Na podstawie wartoÅ›ci i niepewnoÅ›ci współczynnika nachylenia prostej obliczyć war- tość i niepewność pomiaru dla temperaturowego współczynnika oporu platyny. Stwier- dzić, czy w granicach niepewnoÅ›ci rozszerzonej otrzymana wartość Ä… jest zgodna z wartoÅ›ciÄ… tablicowÄ…. (Dla platyny Ä… = 3, 96 · 10-3 1/deg.) 4. Wykonać wykres cechowania termopary E(t). 5. Do zależnoÅ›ci E(t) dopasować prostÄ… metodÄ… graficznÄ…. Wyznaczyć wartość współ- czynnika a1. 6. OceÅ„ jakoÅ›ciowo, czy linia prosta wystarcza dla okreÅ›lenia charakterystyki termopary w badanym zakresie temperatur, tzn. czy jest widoczne zakrzywienie charakterysty- ki. 5