Wyniki wyszukiwana dla hasla X2(4)
Image2861 f(x)=f(0) + gdzie Rą(x) ■■f~T~X + f~T~x2 + f-^r~x3 + r4(x) =1-y-+ W), _f(Ą)(c) :<Ą _CO$
Image2894 -= YY-1/y" zastosowanej do y=x2 dostajemy W fl=o —Lr = £mjV/ =Żf-1)V" dla xef-1,
Image2905 x" , x2.xs b) ex = 2—= 1 + x + —+— + ... dla xeR „=0
Image3097 df _ 1 1 ^arctg^ dX yi + {Ł)2 1 Y X ^arctg* 0 9 ® J y ^arctg* 3f _ X f ^arctg* X2 + y2 e
Image3153 f*x - ięx~y{x2 -2y2 +2x))x = ex y(x2 -2/ + 4x + 2] V = f*y " -2y2 +
Image3206 II (x2 + 2 x(y + h)2 + co$x-2(y + h)-(x2 +2 xy2 + cosx-2y)) h-»0 &
image32 Posiać kanoniczna f(x) = a(x ~ p)2 + q Postać iloczynowa f(x) =a(x-x1)(x~x2)
image32 Posiać kanoniczna f(x) = a(x ~ p)2 + q Postać iloczynowa f(x) =a(x-x1)(x~x2)
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
Image33 2 xdx = x2 + l = £ 2 xdx = afć
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
Image4759 x{Ł) = xl{t) + x2(t) = XKlcos(st + <p1)+XK2 cos(&t + <p2) =
Image4769 m = *1 © + *3 (t) = XĄXie*« + X2s^ ] = Re[(Z! + X2)sJ‘t ]
Wybierz strone: [
1
] [
3
]