Wyniki wyszukiwana dla hasla mechanika1 (podrecznik)7
mechanika1 (podrecznik)4 10 Wektory a, b, c nazywamy bazą albo podstawą. Jeżeli moduły wektorów a,
mechanika1 (podrecznik)5 12 Rys. 1.15 1.11.1. Iloczyny skalarowe wektorów jednostkowych • Korzystaj
mechanika1 (podrecznik)7 16 znajdują się we wspólnym punkcie. Taki iloczyn ma znak plus, gdy wektor
mechanika1 (podrecznik)8 18 Rys. 1.20 a    Rys. 1.20b Po zmianie układu xyz prawoskr
mechanika1 (podrecznik)9 20 20 cos (a, b) arbr =f- a„b„ _ 3-3 + 2-2 + (-l)-0 = j13 yi4-yi3 ~ V 14
mechanika1 (podrecznik)0 22 4. Znaleźć objętość równoległościanu rozpiętego na wektorach e,f,g z po
mechanika1 (podrecznik)1 24 Rys. 1.27 wartości r do t + At odpowiednio zmienia się wektor a, tak że
mechanika1 (podrecznik)2 2. STATYKA Statyka jest działem mechaniki ogólnej. Mechanika zajmuje się o
mechanika1 (podrecznik)3 28 a)    rx = O, tzn. siła P ma punkt zaczepienia na osi, b
mechanika1 (podrecznik)4 30 2.1. Wektor główny i moment główny układu sił Układem sił nazywa się zb
mechanika1 (podrecznik)5 32 I 3. Aksjomat dodania lub odjęcia układu sil równoważnego zeru. Dodanie
mechanika1 (podrecznik)6 34 Siły bierne i siły czynne bardzo często występują w postaci sił powierz
mechanika1 (podrecznik)8 P Rys. 2.21 Rys. 2.22 W przypadku, gdy liczba równań równowagi jest mniejs
mechanika1 (podrecznik)9 40 Pl = (~2i - 2j)N, P2 = 2iN, P3 = 4jN, zatem wektor główny (2-8) S = Pl
mechanika1 (podrecznik)0 42 więc Rys. 226 P1sina3 + (-PjSinaJ = O (2.13)Pj P» _ P3 sin ax sin a2 si
mechanika1 (podrecznik)1 44 rozwiązania tego węzła, przechodząc do rozwiązywania kolejnego-węzła, w
mechanika1 (podrecznik)2 46 Wektor główny pary sił jest równoważny zeru. Wyznaczmy moment główny pa
mechanika1 (podrecznik)3 48 Analityczne warunki równowagi Płaski układ sił będzie się znajdował w r
mechanika1 (podrecznik)4 50 układ sił zredukowany do siły związanej z biegunem i do pary sił, która
mechanika1 (podrecznik)5 52 I I I I I I I I 3. Zredukować podany układ sił, których wielobok sil je

Wybierz strone: [ 1 ] [ 3 ]
kontakt | polityka prywatności