Wyniki wyszukiwana dla hasla cos
image1488a ;c = jrcosć? - sin £ y = xsin 0 + cos#
image1488a ;c = jrcosć? - sin £ y = xsin 0 + cos#
image1488 ;c = jrcosć? - sin £ y = xsin 0 + cos#
image1488 ;c = jrcosć? - sin £ y = xsin 0 + cos#
image1670 C0S7 = M^ cd| = ^ cosyP^c^l^CWBCl^+y) Pai>c= -ACĄCD■ sin x = — |j4C||C5| cos^ ■ sin x
image1670 C0S7 = M^ cd| = ^ cosyP^c^l^CWBCl^+y) Pai>c= -ACĄCD■ sin x = — |j4C||C5| cos^ ■ sin x
Image1827 x = 2arctgf, dx = 2 dt 2 sin sinx =- • 2 x sin — 2 x cos — 2 cos cosx = 2 2 X cos — 2
Image241 ©/(^) = 2 A-l sin kćd + cos ki d A-l
Image241 Z Pi* = 0 ^Z P» = RD Sil1 Ó>~ RS sin a = 0 2-1 2-1Z pif =0 Z pi? = rd cos k j cose = o
Image249 sin( &+ sm /f _ sin( &+ “ y—-——t “ ^ cos Ły
Image249 sin( &+ sm /f _ sin( &+ “ y—-——t “ ^ cos Ły
Image2555 y (x0) = y-| => Ci cos x0 - C2 sin x0 = y-(
Image2772 y1 = yA sin 3x +B cos 3x, Stąd y1 = 3A cos3x - 3B sin 3x.
Image2818 y (x) = Ci cos x - c 2 sin x + 2*
Image2819 0 = Ci sin O + C 2 cos O + O3 - 2 1 = Ci cos O -C2sir|
Image296 sin cos & /---Łgtv
Image299 a = g(sin &+ f cos ł?)
Image3205 y cos(x + h) - cosx ń-> o h lim ń-> o -sinfx + /?J i -sinx
Image3259 dlf dxdy X X X —-cos — = rs r y J X y ^ / x ■ cos —
Image4755 — *i(ć) = XKl — cos(nt + <p1) = ~XKlmsm (wt + ift di di = XKltnt
Wybierz strone: [
2
] [
4
]