Wyniki wyszukiwana dla hasla collum costae I sin CT
image1488a ;c = jrcosć? - sin £ y = xsin 0 + cos#
image1488 ;c = jrcosć? - sin £ y = xsin 0 + cos#
image1488 ;c = jrcosć? - sin £ y = xsin 0 + cos#
image1670 C0S7 = M^ cd| = ^ cosyP^c^l^CWBCl^+y) Pai>c= -ACĄCD■ sin x = — |j4C||C5| cos^ ■ sin x
image1670 C0S7 = M^ cd| = ^ cosyP^c^l^CWBCl^+y) Pai>c= -ACĄCD■ sin x = — |j4C||C5| cos^ ■ sin x
Image1718 L 1.1 2xcos — + sin -f(x) =ł x x , gdy x ^ O gdy x = O
Image1720 1 1 h(x) = sin—, gdy x ^ O x O, gdy x = O
Image17 (2) rtt&.^yuCftkA) A iw. Koyayvq^<Ł: i [ : [<2,b|H ct^^a a ^(*)«o cłU x* (o,Ł>)
Image1827 x = 2arctgf, dx = 2 dt 2 sin sinx =- • 2 x sin — 2 x cos — 2 cos cosx = 2 2 X cos — 2
Image1932 1 1 lim xsin— = O gdyż lim x = O i funkcja sin— jest ograniczona, bo x-»0
Image204 sin ,&=. tg ,0 = /łe
Image2134 CO    ĄZ^sin- n=1    n
Image2193 F (x) 2xcos —+ sin — x x , gdy x ^ OO, gdy x = O
Image229 <x2(t) = -os9x1 (t) - 0?4x2 (t) y(t) = X! (t) 1 0] => cT = 1~ 0 0 1 => at
Image229 <x2(t) = -os9x1 (t) - 0?4x2 (t) y(t) = X! (t) 1 0] => cT = 1~ 0 0 1 => at
Image241 ©/(^) = 2 A-l sin kćd +    cos ki d A-l
Image241 Z Pi* = 0 ^Z P» = RD Sil1 Ó>~ RS sin a = 0 2-1 2-1Z pif =0 Z pi? = rd cos k j cose = o
Image249 sin( &+ sm /f _ sin( &+ “ y—-——t “ ^ cos Ły
Image249 sin( &+ sm /f _ sin( &+ “ y—-——t “ ^ cos Ły
Image2526 a)    sin(arcco9() =41-x2 dla xe[-1,1] x2 b)    cosx >1--

Wybierz strone: [ 4 ] [ 6 ]
kontakt | polityka prywatności