Wyniki wyszukiwana dla hasla MF dodatekA 22 51907 MF dodatekA 08 Dodatek A.2 Funkcja liniowa, wykładnicza i logarytmiczna 253 Rys. A.2.3. W37273 MF dodatekA 18 Aneks A.4 Dokładność obliczeń 263 Oznaczmy błędy względne składników przez A,i=63859 MF dodatekB Aneks B 275Tablice funkcji finansowych. Stopa procentowa 0,01 Aneks B67572 MF dodatekA 12 Aneks A.3 Pochodna i całka 25 7 jj~Jf(x)dx=f(x). A(3.10) Twierdzenie67875 MF dodatekB 09 Aneks B 285Tablice funkcji finansowych. Stopa procentowa86921 MF dodatekA 17 262 Podstawy matematyczne Aneks A Xi = X, + AXj dla i=1,2.....n, a stąd lA24268 MF dodatekB 15 291Aneks B Tablice funkcji72950 MF dodatekB 11 Aneks B 287 Tablice funkcji finansowych. Kapitalizacja z góry. Czynnik oprocent82810 MF dodatekA 03 248 Podstawy matematyczne Aneks A A(1.12) Można wykazać, że leżeli lim an 30215 MF dodatekA 27 272 Podstawy matematyczne Aneks A Metodę równego podziału stosujemy do okr30864 MF dodatekA 16 Aneks A.4 Dokładność obliczeń 261 Ż..I — f (x) x-1 A,v y f(x) A(4.2) MF dodatekA 01 246 Podstawy matematyczne Aneks A Ciągiem malejącym nazywamy taki ciąg {an}, w kMF dodatekA 04 Dodatek A.2 Funkcja liniowa, wykładnicza i logarytmiczna 249 Szereg liczbowy, ktMF dodatekA 05 250 Podstawy matematyczne Aneks A Jeżeli f x, <x2 =^f(xj)<f(x2), x,,x,eX to fMF dodatekA 08 Dodatek A.2 Funkcja liniowa, wykładnicza i logarytmiczna 253 Rys. A.2.3. WykresyMF dodatekA 09 254 Podstawy matematyczne Aneks AA.3. Pochodna i całkaDefinicja Cauchy’ego MówimMF dodatekA 18 Aneks A.4 Dokładność obliczeń 263 Oznaczmy błędy względne składników przez A,i=— dla MF dodatekA 19 264 Podstawy matematyczne Aneks A i 0,0005+0,0005 1A0/—aói—=l0/o- Tak więc w wynMF dodatekA 20 Aneks A.5 Wzór i szereg Taylora 265 Graniczny błąd względny ilorazu jest równy sMF dodatekA 26 Aneks A .7 Przybliżone metody rozwiązywania równań 271 Dla zlokalizowania pierwiWybierz strone: [
5 ] [
7 ]