Wyniki wyszukiwana dla hasla 33 v renalis sin Image1720 1 1 h(x) = sin—, gdy x ^ O x O, gdy x = OImage1827 x = 2arctgf, dx = 2 dt 2 sin sinx =- • 2 x sin — 2 x cos — 2 cos cosx = 2 2 X cos — 2Image1932 1 1 lim xsin— = O gdyż lim x = O i funkcja sin— jest ograniczona, bo x-»0image1 (33) Prawo ^paou.&uc I^OsHUcl T-H<s lu-cALa V^v 2V/ua — cfco^lu^: JUImage2042 ^ak lub ^ + 82 + 33 + ... + an + ... n=1Image204 sin ,&=. tg ,0 = /łeImage2134 CO ĄZ^sin- n=1 nImage2193 F (x) 2xcos —+ sin — x x , gdy x ^ OO, gdy x = OImage241 ©/(^) = 2 A-l sin kćd + cos ki d A-lImage241 Z Pi* = 0 ^Z P» = RD Sil1 Ó>~ RS sin a = 0 2-1 2-1Z pif =0 Z pi? = rd cos k j cose = o Image249 sin( &+ sm /f _ sin( &+ “ y—-——t “ ^ cos ŁyImage249 sin( &+ sm /f _ sin( &+ “ y—-——t “ ^ cos ŁyImage2526 a) sin(arcco9() =41-x2 dla xe[-1,1] x2 b) cosx >1--Image2555 y (x0) = y-| => Ci cos x0 - C2 sin x0 = y-(Image2772 y1 = yA sin 3x +B cos 3x, Stąd y1 = 3A cos3x - 3B sin 3x.Image2814 y(x) = Ci sin x + C2cosx-Image2817 y(x) = Ci sin x + C2cos x+ x2 - 2.Image2818 y (x) = Ci cos x - c 2 sin x + 2*Image2819 0 = Ci sin O + C 2 cos O + O3 - 2 1 = Ci cos O -C2sir|Image296 sin cos & /---ŁgtvWybierz strone: [
6 ] [
8 ]