Wyniki wyszukiwana dla hasla calka MATEMATYKA125 240 IV, Całka nieoznaczona h)jsin^x)dx_ x f xarcsmx . g)J-r—r-ft*TT* 2. Obliczyć całkiMATEMATYKA126 V. CAŁKA OZNACZONA1. OKREŚLENIE CAŁKI OZNACZONEJ I JEJ INTERPRETACJE OKREŚLENIE CAŁKI MATEMATYKA127 244 V. Całka oznaczona TWIERDZENIE l.l (warunek konieczny calkowalności). Jeżeli f jesMATEMATYKA128 246 V. Całka oznaczona Chcemy określić pole |D| trapezu krzywoliniowego D lak, aby okrMATEMATYKA129 24K V. Całka oznaczana PRZYKŁAD INTERPRETACJI FIZYCZNEJ Ograniczymy się do podania jedMATEMATYKA130 250 V. Całka oznaczona c) Korzystając z zadania b) wykazać, że z istnienia całki J|f(xMATEMATYKA131 252 V. Całka oznaczona Ponieważ x, - x(_, - Ax, oraz O = f, więc 0(x,)-<l)(x(.l) =MATEMATYKA132 254 V. Całka oznaczona (2) Funkcja całkowalna na pMATEMATYKA133 256 V. Całka oznaczona f(x)Sg(x) dla x«a,b> dla x,e(x,.„x,),i = l,2.....n U f(x,)AxMATEMATYKA134 258 V Całka oznaczona Stosujemy podstawienie arccos2x = t Wówczas 7‘ dx = -ldl. Vl~4MATEMATYKA135 260 V. Całka oznaczona Prawa strona ostatniej równości jest funkcją różniczko walną naMATEMATYKA137 264 V. Całka oznaczona 2. Stosując twierdzenia o całkowaniu przez poMATEMATYKA138 266 V. Całka oznaczona 15. Jeśli funkcja f jest określona na przedziale < a,x) i caMATEMATYKA139 268 V. Całka oznaczona Gdy rozważana granica jest niewłaściwa ±oc albo nic istnieje, tMATEMATYKA141 272 V. Całka ovtaczonu 272 V. Całka ovtaczonu Zatem (3.4) f def ? Jf(x)dx = ^lim jf(x)MATEMATYKA142 274 V. Całka oznaczona Ponieważ }=2j(tI-|)d,=-|(x+2)vT^. więc Rozważana całka niewłaścMATEMATYKA143 276 V ( alka oznaczona zbieżna, a całka (b) jest rozbieżna W sytuacji 2) całkę (a) nazMATEMATYKA144 278 V Całka oznaczona «o flJ4rdx = lim J4rdx = lim ^(P1 ” - D = +<MATEMATYKA145 280 V Całka oznaczona4. ZASTOSOWANIA GEOMETRYCZNE CAŁKI OZNACZONEJ DŁUGOŚĆ ŁUKU. Na poMATEMATYKA148 286 V. Całka oaiacztma (rys 4.7). Tak nazywa się krzywą, jaką zakreśla ustalony punkt Wybierz strone: [
7 ] [
9 ]