Pobierz cały dokument
szyfrowanie
Rozmiar 13,3 KB

szyfrowanie

ÿþDr in|. Wojciech R. Wiza Katedra Technologii Informacyjnych UEP ¡ð Utajnienie ¡ð Identyfikacja ¡ð Uwierzytelnienie (autentykacja) ¡ð Autoryzacja ¡ð Niezaprzeczalno[ ¡ð Prywatno[ Zbiór technik zapewniajcych bezpieczeDstwo informacji przez szyfrowanie ¡ð Zaszyfrowanie: przetworzenie jawnego tekstu w tekst zaszyfrowany §ð algorytm zaszyfrowujcy §ð klucz zaszyfrowujcy ¡ð Odszyfrowanie: przetworzenie tekstu zaszyfrowanego w tekst jawny §ð algorytm odszyfrowujcy §ð klucz odszyfrowujcy ¡ð Kryptografia z kluczem symetrycznym §ð klucz zaszyfrowujcy i odszyfrowujcy jest taki sam ¡ð Kryptografia kluczem niesymetrycznym (par kluczy) §ð klucz zaszyfrowujcy jest ró|ny od klucza odszyfrowujcego ¡ð Para kluczy §ð Tajny, czyli prywatny §ð Jawny, czyli publiczny ¡ð Nie ma znaczenia który z kluczy wybierzemy jako tajny a który jako jawny ¡ð PrzesBanie utajnionej wiadomo[ci: §ð nadawca szyfruje wiadomo[ kluczem publicznym odbiorcy §ð odbiorca odszyfrowuje wiadomo[ za pomoc swojego klucza prywatnego ¡ð Elektroniczny podpis §ð nadawca szyfruje wiadomo[ za pomoc swojego klucza prywatnego §ð odbiorca odszyfrowuje wiadomo[ za pomoc klucza publicznego nadawcy ¨ð Wybierz dwie du|e liczby pierwsze p i q i oblicz ich iloczyn n=p*q; ¨ð Wybierz liczb e mniejsz od n i wzgldnie pierwsz w stosunku do (p-1)(q-1); ¨ð Wyznacz liczb d tak, aby ed mod[(p-1)(q-1)] = 1; ¨ð Zapomnij liczby p i q; ¨ð Para liczb (n,e) jest kluczem publicznym; ¨ð Para liczb (n,d) jest kluczem prywatnym; ¨ð Aby zaszyfrowa liczb m za pomoc klucza publicznego, oblicz: c = me mod(n); ¨ð Aby odszyfrowa liczb c za pomoc klucza prywatnego, oblicz: m = cd mod(n). ( me mod(n) )d mod(n) = m Generowanie kluczy Szyfrowanie ¨ð Niech p=7 i q=13, zatem n=p*q=7*13=91; ¨ð Poniewa| (p-1)*(q-1)=6*12=72, to odpowiedni liczb e  pierwsz w stosunku do 72 - jest na przykBad 43; ¨ð Wówczas d=67, poniewa| ed mod[(p-1)(q-1)] =1, czyli 43*67 mod(72)=1; rzeczywi[cie, ed=43*67=2881, 2881/72=40, a 72*40=2880, zatem 2881-2880=1; ¨ð Przypu[my, |e mamy zaszyfrowa liczb 2. Obliczamy c=243mod(91) = 8796093022208 mod (91) = 37 ; poniewa| 8796093022208 - ent(8796093022208/91) = = 8796093022208 - 96660362881*91 = 37; ¨ð W celu odszyfrowania liczby c obliczamy: m=c67mod(91)=3767mod(91)= 11735876009129675051815852208158704513861523164727999382664098 66089889961869797411886878993830039201370333 mod(91) = 2; ¡ð Proces weryfikacji §ð |e wiadomo[ pochodzi od danego nadawcy oraz §ð |e wiadomo[ nie zostaBa zmieniona Elektroniczny podpis ¡ð PrzesBanie utajnionej wiadomo[ci: §ð nadawca szyfruje wiadomo[ kluczem publicznym odbiorcy §ð odbiorca odszyfrowuje wiadomo[ za pomoc swojego klucza prywatnego ¡ð Elektroniczny podpis §ð nadawca szyfruje wiadomo[ za pomoc swojego klucza prywatnego §ð odbiorca odszyfrowuje wiadomo[ za pomoc klucza publicznego nadawcy ¡ð Funkcja przetwarzajca cig bitów o dowolnej dBugo[ci (dokument) w cig bitów o staBej dBugo[ci (skrót) ¡ð Ka|dy bit dokumentu wpBywa na ka|dy bit skrótu ¡ð Je[li dany bit dokumentu ulega zmianie, to z 50% prawdopodobieDstwem ka|dy bit skrótu ulegnie zmianie ¡ð PrawdopodobieDstwo, |e dwa ró|ne dokumenty uzyskaj taki sam skrót jest bliskie zeru ¡ð MD5 (W skarbonce jest 1500 zBotych) = a4a5471a0e019a4a502134f ¡ð MD5 (W skarbonce jest 1100 zBotych) = d6dee11aae89661a45eb9d2 ¡ð MD5 (W skarbonce jest 1500 zBotych.) = 05f8cfc03f4e58cbee731aa ¡ð MD5 (W skarbonce jest 1500 zBoty) = f80b3fde8ecbac1b515960b ¡ð MD5 (W skarbonce jest 1500 zBotych) = a4a5471a0e019a4a502134f ¡ð Obecnie MD5 uwa|any jest za niewystarczajco bezpieczny ¡ð Nowe algorytmy SHA (Secure Hash Algorithm): §ð SHA-1 §ð SHA-2 (SHA-224, SHA-256, SHA-384, SHA-51) ©ð Wiadomo[ od Adama do Ewy:  Wyjdziesz za mnie?" ©ð Utworzenie skrótu z wiadomo[ci za pomoc funkcji haszujcej ©ð Zaszyfrowanie skrótu z wiadomo[ci za pomoc prywatnego klucza Adama ©ð WysBanie tekstu wiadomo[ci i szyfrogramu skrótu do Ewy ©ð Otrzymanie obu przesyBek przez Ew ©ð Utworzenie wBasnego skrótu z wiadomo[ci za pomoc tej samej funkcji haszujcej ©ð Odszyfrowanie przesBanego skrótu z wiadomo[ci za pomoc publicznego klucza Adama ©ð Porównanie obu skrótów ©ð Je[li skróty identyczne, to wiadomo[ autentyczna ªð Je[li skróty ró|ne, to wiadomo[ zmieniona ¡ð Proces okre[lenia nadawcy oraz weryfikacji, |e nadawca wiadomo[ci jest tym, za kogo si podaje ¡ð Zrodki identyfikacji: hasBo, PIN, cyfrowy certyfikat ¡ð Transmisja od klienta do serwera haseB lub PIN-ów zaszyforwanych, w celu uniknicia ich skBadowania w serwerze, a zatem uniemo|liwienie ich kradzie|y ¡ð Cyfrowy certyfikat (narzdzie identyfikacji w przeciwieDstwie do cyfrowego podpisu  narzdzia autentykacji) ¡ð Celem cyfrowego certyfikatu jest potwierdzenie zwizku midzy osob fizyczn lub prawn i jej kluczem publicznym ¡ð Certyfikaty s wydawane przez: organizacje certyfikujce ¡ð Informacje identyfikujce certyfikowan osob: imi, nazwisko, adres, data urodzenia itp. ¡ð Klucz publiczny certyfikowanej osoby ¡ð Numer certyfikatu ¡ð Okres wa|no[ci certyfikatu ¡ð Informacje o wystawcy certyfikatu ¡ð Cyfrowy podpis organizacji certyfikujcej (certyfikat jest elektronicznie podpisany przez organizacj certyfikujc) ¡ð WysyBajc zaszyfrowan wiadomo[ do Ewy, Adam doBcza swój certyfikat ¡ð Ewa najpierw sprawdza autentyczno[ publicznego klucza Adama, posBugujc si publicznym kluczem organizacji certyfikujcej ¡ð Nastpnie Ewa sprawdza autentyczno[ wiadomo[ci Adama. ¡ð PrzesBanie utajnionej wiadomo[ci: dokument §ð nadawca szyfruje wiadomo[ kluczem publicznym odbiorcy §ð odbiorca odszyfrowuje wiadomo[ za pomoc swojego klucza prywatnego skrót ¡ð Elektroniczny podpis §ð nadawca szyfruje wiadomo[ za pomoc swojego klucza prywatnego §ð odbiorca odszyfrowuje wiadomo[ za pomoc klucza publicznego nadawcy pobranego z certyfikatu nadawcy ¡ð Cecha komunikacji, która uniemo|liwia jednej z komunikujcych si stron zaprzeczenie, |e komunikacja miaBa miejsce ¡ð Niezaprzeczalno[ nadawcy ¡ð Niezaprzeczalno[ odbiorcy ¡ð Niezaprzeczalno[ przesyBu ¡ð Odbiorca twierdzi, |e otrzymaB wiadomo[ od danego nadawcy, a wskazany nadawca zaprzecza, |e wysyBaB t wiadomo[ ¡ð Odbiorca twierdzi, |e otrzymaB wiadomo[ ró|n od tej, o której nadawca twierdzi, |e j wysBaB ¡ð Odbiorca twierdzi, |e otrzymaB od danego nadawcy pewn wiadomo[ w okre[lonym momencie, a wskazany nadawca zaprzecza jakoby wysBaB t wiadomo[ w tym czasie ¡ð Cyfrowy podpis i certyfikat nadawcy ¡ð Cyfrowy podpis wiadomo[ci przez zaufan stron trzeci ¡ð Cyfrowy podpis skrótu przez zaufan stron trzeci (zapewnienie prywatno[ci) ¡ð PrzesyB za po[rednictwem zaufanej strony trzeciej Dr inż. Wojciech R. Wiza
Katedra Technologii Informacyjnych
UEP
ï‚Ä„ Utajnienie
ï‚Ä„ Identyfikacja
ï‚Ä„ Uwierzytelnienie (autentykacja)
ï‚Ä„ Autoryzacja
ï‚Ä„ Niezaprzeczalność
ï‚Ä„ Prywatność
Zbiór technik zapewniających
bezpieczeństwo informacji przez szyfrowanie
ï‚Ä„ Zaszyfrowanie: przetworzenie
jawnego tekstu w tekst
zaszyfrowany
ï‚§ algorytm zaszyfrowujÄ…cy
ï‚§ klucz zaszyfrowujÄ…cy
ï‚Ä„ Odszyfrowanie: przetworzenie
tekstu zaszyfrowanego w tekst
jawny
ï‚§ algorytm odszyfrowujÄ…cy
ï‚§ klucz odszyfrowujÄ…cy
ï‚Ä„ Kryptografia z kluczem symetrycznym
ï‚§ klucz zaszyfrowujÄ…cy i odszyfrowujÄ…cy jest taki sam
ï‚Ä„ Kryptografia kluczem niesymetrycznym
(parÄ… kluczy)
 klucz zaszyfrowujący jest różny od klucza odszyfrowującego
ï‚Ä„ Para kluczy
ï‚§ Tajny, czyli prywatny
ï‚§ Jawny, czyli publiczny
ï‚Ä„ Nie ma znaczenia który z kluczy
wybierzemy jako tajny a który jako
jawny
ï‚Ä„ PrzesÅ‚anie utajnionej wiadomoÅ›ci:
 nadawca szyfruje wiadomość kluczem publicznym odbiorcy
 odbiorca odszyfrowuje wiadomość za pomocą swojego klucza
prywatnego
ï‚Ä„ Elektroniczny podpis
 nadawca szyfruje wiadomość za pomocą swojego klucza
prywatnego
 odbiorca odszyfrowuje wiadomość za pomocą
klucza publicznego nadawcy
 Wybierz dwie duże liczby pierwsze p i q i oblicz ich iloczyn n=p*q;
 Wybierz liczbę e mniejszą od n i względnie pierwszą w stosunku
do (p-1)(q-1);
 Wyznacz liczbę d tak, aby ed mod[(p-1)(q-1)] = 1;
 Zapomnij liczby p i q;
 Para liczb (n,e) jest kluczem publicznym;
 Para liczb (n,d) jest kluczem prywatnym;
 Aby zaszyfrować liczbę m za pomocą klucza publicznego, oblicz:
c = me mod(n);
 Aby odszyfrować liczbę c za pomocą klucza prywatnego, oblicz:
m = cd mod(n).
( me mod(n) )d mod(n) = m
Generowanie kluczy
Szyfrowanie
 Niech p=7 i q=13, zatem n=p*q=7*13=91;
 Ponieważ (p-1)*(q-1)=6*12=72, to odpowiednią liczbą e – pierwszą
w stosunku do 72 - jest na przykład 43;
 Wówczas d=67, ponieważ ed mod[(p-1)(q-1)] =1, czyli 43*67 mod(72)=1;
rzeczywiście, ed=43*67=2881, 2881/72=40, a 72*40=2880, zatem
2881-2880=1;
 Przypuśćmy, że mamy zaszyfrować liczbę 2. Obliczamy c=243mod(91) =
8796093022208 mod (91) = 37 ; ponieważ
8796093022208 - ent(8796093022208/91) =
= 8796093022208 - 96660362881*91 = 37;
 W celu odszyfrowania liczby c obliczamy: m=c67mod(91)=3767mod(91)=
11735876009129675051815852208158704513861523164727999382664098
66089889961869797411886878993830039201370333 mod(91) = 2;
ï‚Ä„ Proces weryfikacji
 że wiadomość pochodzi od danego nadawcy
oraz
 że wiadomość nie została zmieniona
Elektroniczny podpis
ï‚Ä„ PrzesÅ‚anie utajnionej wiadomoÅ›ci:
 nadawca szyfruje wiadomość kluczem publicznym
odbiorcy
 odbiorca odszyfrowuje wiadomość za pomocą swojego
klucza prywatnego
ï‚Ä„ Elektroniczny podpis
 nadawca szyfruje wiadomość za pomocą swojego
klucza prywatnego
 odbiorca odszyfrowuje wiadomość za pomocą klucza
publicznego nadawcy
ï‚Ä„ Funkcja przetwarzajÄ…ca ciÄ…g bitów o dowolnej
długości (dokument) w ciąg bitów o stałej
długości (skrót)
ï‚Ä„ Każdy bit dokumentu wpÅ‚ywa na każdy bit
skrótu
ï‚Ä„ JeÅ›li dany bit dokumentu ulega zmianie, to z
50% prawdopodobieństwem każdy bit skrótu
ulegnie zmianie
ï‚Ä„ PrawdopodobieÅ„stwo, że dwa różne dokumenty
uzyskają taki sam skrót jest bliskie zeru
ï‚Ä„ MD5 (W skarbonce jest 1500 zÅ‚otych) = a4a5471a0e019a4a502134f
ï‚Ä„ MD5 (W skarbonce jest 1100 zÅ‚otych) = d6dee11aae89661a45eb9d2
ï‚Ä„ MD5 (W skarbonce jest 1500 zÅ‚otych.) = 05f8cfc03f4e58cbee731aa
ï‚Ä„ MD5 (W skarbonce jest 1500 zÅ‚oty) = f80b3fde8ecbac1b515960b
ï‚Ä„ MD5 (W skarbonce jest 1500 zÅ‚otych) = a4a5471a0e019a4a502134f
ï‚Ä„ Obecnie MD5 uważany jest za
niewystarczajÄ…co bezpieczny
ï‚Ä„ Nowe algorytmy SHA (Secure Hash
Algorithm):
ï‚§ SHA-1
ï‚§ SHA-2 (SHA-224, SHA-256, SHA-384, SHA-51)
ï‚© Wiadomość od Adama do Ewy: â€ÅºWyjdziesz za mnie?"
 Utworzenie skrótu z wiadomości za pomocą funkcji
haszujÄ…cej
 Zaszyfrowanie skrótu z wiadomości za pomocą
prywatnego klucza Adama
 Wysłanie tekstu wiadomości i szyfrogramu skrótu do
Ewy
 Otrzymanie obu przesyłek przez Ewę
 Utworzenie własnego skrótu z wiadomości za pomocą
tej samej funkcji haszujÄ…cej
 Odszyfrowanie przesłanego skrótu z wiadomości za
pomocÄ… publicznego klucza Adama
 Porównanie obu skrótów
 Jeśli skróty identyczne, to wiadomość autentyczna
 Jeśli skróty różne, to wiadomość zmieniona
ï‚Ä„ Proces okreÅ›lenia nadawcy oraz weryfikacji, że
nadawca wiadomości jest tym, za kogo się podaje
ï‚Ä„ Åšrodki identyfikacji: hasÅ‚o, PIN, cyfrowy certyfikat
ï‚Ä„ Transmisja od klienta do serwera haseÅ‚ lub PIN-ów
zaszyforwanych, w celu uniknięcia ich składowania w
serwerze, a zatem uniemożliwienie ich kradzieży
ï‚Ä„ Cyfrowy certyfikat (narzÄ™dzie identyfikacji w
przeciwieństwie do cyfrowego podpisu – narzędzia
autentykacji)
ï‚Ä„ Celem cyfrowego certyfikatu jest
potwierdzenie związku między osobą
fizycznÄ… lub prawnÄ… i jej kluczem
publicznym
ï‚Ä„ Certyfikaty sÄ… wydawane przez:
organizacje certyfikujÄ…ce
ï‚Ä„ Informacje identyfikujÄ…ce certyfikowanÄ…
osobÄ™: imiÄ™, nazwisko, adres, data urodzenia
itp.
ï‚Ä„ Klucz publiczny certyfikowanej osoby
ï‚Ä„ Numer certyfikatu
ï‚Ä„ Okres ważnoÅ›ci certyfikatu
ï‚Ä„ Informacje o wystawcy certyfikatu
ï‚Ä„ Cyfrowy podpis organizacji certyfikujÄ…cej
(certyfikat jest elektronicznie podpisany
przez organizacjÄ™ certyfikujÄ…cÄ…)
ï‚Ä„ WysyÅ‚ajÄ…c zaszyfrowanÄ… wiadomość do Ewy,
Adam dołącza swój certyfikat
ï‚Ä„ Ewa najpierw sprawdza autentyczność
publicznego klucza Adama, posługując się
publicznym kluczem organizacji
certyfikujÄ…cej
ï‚Ä„ NastÄ™pnie Ewa sprawdza autentyczność
wiadomości Adama.
ï‚Ä„ PrzesÅ‚anie utajnionej wiadomoÅ›ci:
dokument
 nadawca szyfruje wiadomość
kluczem publicznym odbiorcy
 odbiorca odszyfrowuje wiadomość za pomocą
swojego klucza prywatnego
skrót
ï‚Ä„ Elektroniczny podpis
 nadawca szyfruje wiadomość za pomocą
swojego klucza prywatnego
 odbiorca odszyfrowuje wiadomość za pomocą
klucza publicznego nadawcy
pobranego
z certyfikatu
nadawcy
ï‚Ä„ Cecha komunikacji,
która uniemożliwia jednej z komunikujących
się stron zaprzeczenie, że komunikacja miała
miejsce
ï‚Ä„ Niezaprzeczalność nadawcy
ï‚Ä„ Niezaprzeczalność odbiorcy
ï‚Ä„ Niezaprzeczalność przesyÅ‚u
ï‚Ä„ Odbiorca twierdzi, że otrzymaÅ‚ wiadomość od
danego nadawcy, a wskazany nadawca
zaprzecza, że wysyłał tę wiadomość
ï‚Ä„ Odbiorca twierdzi, że otrzymaÅ‚ wiadomość
różną od tej, o której nadawca twierdzi, że ją
wysłał
ï‚Ä„ Odbiorca twierdzi, że otrzymaÅ‚ od danego
nadawcy pewną wiadomość w określonym
momencie, a wskazany nadawca zaprzecza
jakoby wysłał tę wiadomość w tym czasie
ï‚Ä„ Cyfrowy podpis i certyfikat nadawcy
ï‚Ä„ Cyfrowy podpis wiadomoÅ›ci przez zaufanÄ…
stronÄ™ trzeciÄ…
ï‚Ä„ Cyfrowy podpis skrótu przez zaufanÄ… stronÄ™
trzecią (zapewnienie prywatności)
ï‚Ä„ PrzesyÅ‚ za poÅ›rednictwem zaufanej strony
trzeciej


Wyszukiwarka
Wyst‘pił bł‘d podczas wyszukiwania.
Więcej podobnych podstron

214/9327, 215/1413, 240/5537, 231/6926, 224/4120, 142/8504, 130/46, 153/957, 196/1411, 151/1995, 704/3084, 720/5200, 739/880, 701/4277, 715/378,
Kontakt | Polityka prywatności