Statystyka matematyczna i teoria estymacji


X
Rn
X (X , A)
P¸
P = {P¸ : ¸ " &!}
(X , A, P)
X X = (X1, . . . , Xn) X1, . . . , Xn
(X , A, P)n
(X1, . . . , Xn) P¸ ¸
Rk T = (T1, . . . , Tk)
X
-1
" T (B) " A.
B"B(Rk)
(X1, . . . , Xn)
n
"
1
X = Xi.
n
i=1
(X1, . . . , Xn)
n
"
1
S2 = (Xi - X)2.
n - 1
i=1
(X1, . . . , Xn)
n
"
1
Fn(t) = 1 (Xi), t " R.
(-",t]
n
i=1
Fn
(X1, . . . , Xn)
F t " R
EF [Fn(t)] = F (t)
( )
PF lim Fn(t) = F (t) = 1
n"
"
Fn(t) - F (t)
n
F (t)[1 - F (t)]
N (0, 1) n "
Dn = sup |Fn(x) - F (x)|
x"R
(X1, . . . , Xn) F Fn
Dn 0 n "
1
(X1, . . . , Xn)
P " P F Fn
Dn = sup |Fn(x) - F (x)| x " R
n"N
"
lim P ( nDn x) = K(x),
n"
"
"
2k2x2
K(x) = (-1)k 1 (x).
(0,")
k=-"
(X1, . . . , Xn) P " P
F
n
"
1
Ak(X) = Xik.
n
i=1
x Ak
Fn(·; x) Fn(·; X)
+"
n
"
1
Ak(x) = xk = tkdFn(t, x).
i
n
i=1
R
k
EXk < " Ak(x) EX1
(X1, . . . , Xn)
n
"
1
Mk(X) = (Xi - X)k,
n
i=1
X
X1, . . . , Xn
É
X1(É), . . . , Xn(É)
X(1)(É) X(2)(É) . . . X(n)(É).
É X(1) . . . X(n)
X(1) = min{X1, . . . , Xn} X(n) = max{X1, . . . , Xn}
X1, . . . , Xn P " P
F X(k)
F
+"(x)
n!
FX (x) = tk-1(1 - t)n-kdt.
(k)
(k - 1)!(n - k)!
0
FX
(k)
B(k, n - k + 1) F
X1, . . . , Xn
f k
Xk
n!
fX (x) = f(x)[F (x)]k-1[1 - F (x)]n-k.
(k)
(k - 1)!(n - k)!
p " (0, 1) (X1, . . . , Xn)
{
X(np), np " Z,
Zn,p =
X([np]+1), np " Z,
/
(X1, . . . , Xn) P " P
F p " (0, 1) śp
F (x - 0) p F (x) F (x - 0) = limx0- F (x) śp
p F śp Zn,p śp
n "
1
2
Med X = Zn, 1
2
{
n+1
X( ), n ,
2
Med X =
1
n n
(X( ) + X( +1)), n ,
2
2 2
T X
P = {P¸ : ¸ " &!}
X ¸ t
X T = t ¸
(X , A) X A
à X µ (X , A)
+"
fdµ = 0.
A
f = 0 A µ(A) = 0
f = 0 A
f A 0
f A
+"
fdµ = 0 Ò! f = 0 A,
A
f A
+"
fdµ = 0 Ò! µ(A) = 0.
A
f
+"
½(A) = fdµ,
A
A ½ Ã Ã
(X , A)
(X , A) µ ½
A " A
+"
½(A) = fµ.
A
µ(A) = 0 Ò! ½(A) = 0.
½
µ
f
+"
" fdµ = ½(A).
A"A
A
f µ ½
½ µ f
µ
µ
+"
g ½(A) = gdµ f = g
A
+"
µ fdµ = 0
A
A " A f = 0 µ ½
µ ½ << µ
P
µ " P << µ P
P "P
µ
" X
card X 5!0 A X
A = 2X P
" X
A X P
(X , A)
A P
" P (A) = 0.
P "P
P
P P
µ " P (A) = 0
P "P
µ(A) = 0 µ
P
T
P = {P¸ : ¸ " &!} Ã
µ g¸ h p¸
P¸
p¸(x) = g¸[T (x)]h(x) µ.
(X1, . . . , Xn)
¸ Xi <" Poiss(¸) i = 1, . . . , n
n -¸
1 -¸
¸x ¸x
p¸(x1, . . . , xn) = p¸(x1) . . . p¸(xn) = · . . . · =
x1! xn!
"n
-n¸ n
"n "
i=1
¸ 1
-n¸
i=1
= ¸ .
x1! · . . . · xn! xi!
i=1
n
"
1
T (x) = xi g¸[T (x)] = ¸nT (x) -n¸
n
i=1
n
"
1
h(x) =
xi!
i=1
p¸(x1, . . . , xn) = g¸[T (x)]h(x).
n
"
1
T (X) = Xi
n
i=1
T U P
g h T = g(U) P U = h(T ) P
T
U g T = G(U) P
V (X)
¸
E¸[V (X)] ¸
¸
T
T
E¸[f(T )] = c ¸ " &!
f(t) = c P
" E¸[f(T )] = 0 Ò! f(t) = 0 P.
¸"&!
T
" E¸[f(T )] = 0 Ò! f(t) = 0 P
¸"&!
(X1, . . . , Xn) Xi <" U(0, ¸) ¸ > 0
T = X(n) ¸
" E¸[f(T )] = 0.
¸>0
t
Xn : fX (t) = n(¸ )n-1 11 (t)
(0,¸)
(n)
¸
+"¸ ( )n-1
t
" E¸[f(T )] = f(t)n dt = 0.
¸>0
¸
0
f(t) = 0
P
f(t) = 0 P T
{P¸ : ¸ " &!}
P¸
µ
ëÅ‚ öÅ‚
s
"
íÅ‚
p¸ = exp ·i(¸)Ti(x) - B(¸)Å‚Å‚ · h(x),
i=1
·i B ¸ Ti
X
s
ëÅ‚ öÅ‚
s
"
íÅ‚
p¸(x) = exp ·i(¸)Ti(x) - B(¸)Å‚Å‚ · h(x),
i=1
T = (T1, . . . , Ts)
T
P = {P¸ : ¸ " &!} V
T
(X , A, P) P = {P¸ : ¸ " &!}
X
g(¸) &!
g(¸) ´(X)
R
´(x) ´(X) X
x g(¸)
g(¸)
g(¸)
d L(¸, d)
L
L(¸, d) 0, ¸, d
L[¸, g(¸)] = 0 ¸
L(¸, d) = (d - g(¸))2
´
R(¸, ´) := E¸[L(¸, ´(X))],
´ ´
¸
L[¸, g(¸)] = 0 ¸ ¸0
´(X) x g(¸0)
g(¸)
¸
´(X) g(¸)
E¸[´(X)] - g(¸) ´(X)
´(X) g(¸)
E¸[´(X)] = g(¸)
¸
Ć
I X
P (X " I) = 1
Ć(EX) E[Ć(X)].
Ć
X X
X X
2
P¸ " P = {P¸ : ¸2 " &!} T
P ´ g(¸) L(¸, d)
d d
R(¸, ´) = EL[¸, ´(X)] < "
·(t) = E[´(X)|T = t].
·(T )
R(¸, ·) < R(¸, ´),
´(X) = ·(T )
´
´2
" R(¸, ´2 ) R(¸, ´)
¸"&!
R(¸0, ´2 ) < R(¸0, ´) ¸0.
´
L ´
g(¸) ´2
R(¸, ´) = R(¸, ´2 ) ¸ ´ = ´2
Å„ : R R X
Ć(a) = E[ń(X - a)] a
Ć Ć(a)
Å„
´(X) g(¸)
" E¸[´(X)] = g(¸).
¸"&!
X
1
Bin(¸, n) ¸ " (0, 1) g(¸) =
¸
( )
n
"
n 1
" ´(x) ¸x(1 - ¸)x = .
¸"(0,1)
x ¸
x=0
´
´(0) +" ¸ 0
´0 g(¸)
´ =
´0 - U U
" E¸U = 0.
¸"&!
´
´ ´0 U ´0
Var¸ ´ = Var¸(´0 - U) = E¸(´0 - U)2 - (E¸´)2 = E¸(´0 - U)2 - [g(¸)]2.
´ E¸(´0 -
U)2
" ´ " "
E¸´2 < " ¸ " &!
X P (X = -1) = p
P (X = k) = q2pk k = 0, 1, 2, . . . p " (0, 1) q = 1 - p
p q2
´ " "
" " E¸(´U) = 0,
¸"&! U"U
U "
E¸U = 0
(1) Ô! " " Cov¸(´, U) = 0.
¸"&! U"U
g
g(¸)
NJMW
NJMW
U
NJMW
U
NJMW
U NJMW
T P = {P¸ : ¸ " &!}
g(¸) U
´ g(¸)
T
T ·(T ) ·(T )
E¸[·(T )] = E¸[·(T )] = E[E[´(X)|T ]] = E¸[´(X)] = g(¸)
¸ " &!
g(¸) T ·(Y )
NJMW g(¸)
X P = {P¸ :
¸ " &!} T P
g(¸)
T
P
X
P = {P¸ : ¸ " &!} T
P L(¸, d)
g(¸)
(NJMW )
NJMW
T
NJMW g(¸)
P s
¸ = (¸1, . . . , ¸2) T = (T1, . . . , Ts)
X1, . . . , Xn N (µ, Ã2)
Ã2 Ã2
n
"
1
´(X) = (Xi - X)2,
n - 1
i=1
n n n
" " "
1
X = Xi T = ( Xi, (Xi-
n
i=1 i=1 i=1
X)2) ´ NJMW
T
NJMW U g(¸)
E¸[´(T )] = g(¸)
¸ " &!
´(X)
g(¸) NJMW
´ T
´
´2 (T ) = E[´(X)|T ]
(X , A, P) P << µ µ Ã
P = {P¸ : ¸ " &!}
p¸ {x : p¸(x) > 0} X R
&! R
p¸(x) &! P
"
I(¸) = E¸["¸ ln p¸(X)]2 " (0, ") I(¸)
+"
"
p¸(x)dµ(x) = 0
"¸
X
(X1, . . . , Xn)
´
U g(¸)
+" +"
" "
g2 (¸) = ´(x) p¸(x)dµn(x) = ´(x)p¸(x)dµn(x),
"¸ "¸
n n
X X
[g2 (¸)]2
Var¸ ´
nI(¸)
"
ln p¸(x) = a(¸)[´(x) - g(¸)] µ,
"¸
a(¸) ¸
´ g(¸)
¸ " &!
R(¸, ´)
+"
R(¸, ´)d›(¸).
›
+"
d›(¸) = 1.
›
+"
´ R(¸, ´)d›(¸)
›
¸
Åš ›
›
¸
n
¸
›
›
X = x ›
› X = x
d E[L(¸, d)]
X = x ´(X)
E[L(Åš, ´(X))|X = x]
Åš › Åš = ¸
X P¸ g(¸)
L(¸, d)
´0
x ´›(x) E[L(Åš, ´(X))|X =
x]
´›(X)
L(¸, d) = (d - g(¸))2 ´›(x) = E[g(Åš)|X = x]
E[w(Åš)-g(Åš)|X=x]
L(¸, d) = w(¸)(d - g(¸))2 ´›(x) =
E[w(Åš)|X=x]
L(¸, d) = |d - g(¸)| ´›
g(Åš)|X = x
´ sup R(¸, d)
¸"&!
sup R(¸, ´)
¸"&!
´›
+"
r› = R(¸, ´›)d›(¸).
›
2
›2 r› r›
´›
¸ ´›
(›n) ´n
›n
+"
rn := R(¸, ´n)d›n(¸) r.
(›n)
› r› < r
(›n) ´
›n
+"
rn := R(¸, ´n)d› r
´
sup R(¸, ´) = r.
¸"&!
´
(›n)
(X1, . . . , Xn) p¸(x)
µ ¸ " &! ‚" Rd L(·; x1, . . . , xn) : &!
R
n
"
L(¸; x1, . . . , xn) = p¸(xi)
i=1

¸ ¸(X1, . . . , Xn)

L(¸(x1, . . . , xn); x1, . . . , xn) = sup L(¸; x1, . . . , xn)
¸"&!
(x1, . . . , xn)

g(¸) g(¸) ¸
¸
P P¸ ¸ " &!
p¸ µ &!
¸0
¸ = ¸0 (X1, . . . , Xn)
8
P
P¸ (p¸ (X1) · . . . · p¸ (Xn) > p¸(X1) · . . . · p¸(Xn)) 1,
0 0 0
n "
X P
T
[¸] [¸] T
(X1, . . . , Xn)
k
ëÅ‚ öÅ‚
k
"
íÅ‚
p¸(x) = exp ¸i · Ti(x) - B(¸)Å‚Å‚ · h(x),
i=1
¸ " &! ‚" Rd
îÅ‚ Å‚Å‚
"2B(¸)
ðÅ‚ ûÅ‚
C =
"¸i"¸j
1 i,j k

¸(X1, . . . , Xn)

(x1, . . . , xn) ¸(x1, . . . , xn)
n
"
1 "
Ti(xj) = B(¸), i = 1, . . . , k.
n "¸i
j=1
(X1, . . . , Xn)
T ¸
T [¸]
(X , A, P) P =
{P¸ : ¸ " Åš}
(X1, . . . , Xn)
¸ " Åš
¸ " Åš 1 - Ä… (0 < Ä… < 1)
(¸1, ¸2)
¸1 = ¸1(X1, . . . , Xn) ¸2 = ¸2(X1, . . . , Xn)
(X1, . . . , Xn) ¸
¸ " Åš
P (¸1(X1, . . . , Xn) < ¸ < ¸2(X1, . . . , Xn)) = 1 - Ä….
(¸1, ¸2)
¸
(¸1, ¸2) 1 - Ä…
(X1, . . . , Xn)
EXi = ¸ Var Xi = Ã2 < "
Ã2 Ã2
P (|Xn - ¸| µ) Ô! 1 - P (|Xn - ¸| < µ) Ô!
nµ2 nµ2
Ã2 Ã2
P (|Xn - ¸| < µ) 1 - Ô! P (Xn - µ < ¸ < Xn + µ) 1 - .
nµ2 nµ2
Ã2 = 1 0, 99
10
"
nµ2 100 µ =
n
" "
P (Xn - 10/ n < ¸ < Xn + 10/ n) 0, 99.
(X1, . . . , Xn) N (µ, Ã2)
" µ Ã2 Xn N (µ, Ã/
n)
Xn - µ
U = "
Ã/ n
N (0, 1) Ä… u1 u2
P (u1 < U < u2) = Åš(u2) - Åš(u1) = 1 - Ä….
Ä… Ä… = Ä…1 + Ä…2 Ä…1, Ä…2 > 0
u1 = u(Ä…1) u2 = u(1 - Ä…2) u(Ä…1) u(1 - Ä…2)
Ä…1 1 - Ä…2 U
( )
"
Xn - µ
P u(Ä…1) < n < u(1 - Ä…2) = 1 - Ä….
Ã
Ä…
Ä…1 = Ä…2 =
2
ëÅ‚ öÅ‚
( (
Ä…) Ã Ä…) Ã
íÅ‚ Å‚Å‚
Xn - u 1 - " , Xn + u 1 - " .
2 n 2 n
(X1, . . . , Xn) N (µ, Ã2)
µ Ã2
Xn - µ
"
t = ,
Sn/ n - 1
n
"
2 1
Sn = (Xi-Xn)2 t n-1
n
i=1
t(Ä…, n - 1) Ä…
ëÅ‚ öÅ‚
( ) ( )
Ä… Xn - µ Ä…
íÅ‚ Å‚Å‚
"
P t , n - 1 < < t 1 - , n - 1 = 1 - Ä….
2 Sn/ n - 1 2
Ä…
t(Ä…, n - 1) = -t(1 - , n - 1)
2 2
ëÅ‚ öÅ‚
( ) ( )
Ä… Sn Ä… Sn
íÅ‚ Å‚Å‚
" "
Xn - t 1 - , n - 1 , Xn + t 1 - , n - 1
2 n - 1 2 n - 1
µ 1 - Ä…
X
EX = µ Var X = Ã2 > 0
n 100
Xn - µ
U = "
Ã/ n
n-1
"
"2 1
N (0, 1) Sn = (Xi - Xn)2
n
i=1
Ã2 n
"2
Ã2 Sn
ëÅ‚ öÅ‚
( (
Ä…) S" Ä…) S"
íÅ‚ Å‚Å‚
Xn - u 1 - "n , Xn + u 1 - "n
2 n 2 n
1 - Ä…
X1, . . . , Xn N (µ, Ã2)
µ Ã
2
nSn
Ç2 =
Ã2
(n-1)
Ç2(p, n - 1) p
ëÅ‚ öÅ‚
( ) )
2
Ä… nSn ( Ä…
íÅ‚ Å‚Å‚
P Ç2 , n - 1 < < Ç2 1 - , n - 1 = 1 - Ä….
2 Ã2 2
Ã2
ëÅ‚ öÅ‚
2 2
nSn nSn
íÅ‚ Å‚Å‚
, ,
Ä…
Ç2(1 - , n - 1) Ç2(Ä…, n - 1)
2 2
Ã
ëÅ‚" öÅ‚
"
n n
íÅ‚
Sn, Snłł.
Ä…
Ç2(1 - , n - 1) Ç2(Ä…, n - 1)
2 2
X1, . . . , Xn N (µ, Ã2)
µ Ã n > 50
"
" "
2
n
2Ç2 a" 2nS N ( 2n - 3, 1)
Ã2
ëÅ‚ öÅ‚
( (
"
Ä…) Sn " " Ä…)Å‚Å‚
íÅ‚
P 2n - 3 - u 1 - < 2n < 2n - 3 + u 1 - H" 1 - Ä….
2 Ã 2
ëÅ‚ öÅ‚
" "
Sn 2n Sn 2n
íÅ‚ Å‚Å‚
" "
,
Ä… Ä…
2n - 3 + u(1 - ) 2n - 3 - u(1 - )
2 2
à 1 - ą
Ã2
(X , A, P) P = {P¸ : ¸ " Åš}
X ¸
¸ Åš0
H : ¸ " Åš0
H0
X
T (X) K
R
H0 T (X) " K H0
H0
Ć(X) [0, 1] Ć(X)
Ć H0 Ć
H0
Ä…Ć(¸) = E¸[Ć(X)], ¸ " Åš0.
sup Ä…Ć(¸) Ä…
¸"Åš0
Ä… Ä…
H0
H1 : ¸ " Åš1 Åš1
Åš0 )" Åš1 = "
²Ć(¸) = 1 - E¸[Ć(X)], ¸ " Åš1.
MĆ(¸) = E¸[Ć(X)],
¸ " Åš0 )" Åš1 Ć
MĆ(¸) H0
¸ ¸ " Åš0 MĆ(¸) = Ä…Ć(¸)
¸ " Åš1 MĆ(¸) = 1 - ²Ć(¸)
(X1, . . . , Xn)
N (µ, Ã2) µ Ã2
H0 : µ = µ0 H1 : µ = µ0,
8
µ0 Ä…
"
Xn - µ0
T = n,
Ã
n
"
1
Xn = Xi T N (0, 1) H0
n
i=1
Ä… Ä…
H0 T < -u1- T > u1- up
2 2
p N (0, 1) H0
H1 : µ > µ0 H0 T > u1-Ä…
H1 : µ < µ0 H0 T < -u1-Ä…
(X1, . . . , Xn) N (µ, Ã2) µ
Ã2
H0 : µ = µ0 H1 : µ = µ0,
8
µ0 Ä…
"
n(Xn - µ0)
T = ,
Sn
n n
" "
1 2 1
Xn = Xi Sn = (Xi - Xn)2 t
n n-1
i=1 i=1
n - 1 H0 H0
Ä… Ä…
T < -t1- (n - 1) T > t1- (n - 1) tp(n - 1)
2 2
p t n - 1
(X1, . . . , Xn) N (µ, Ã2) µ Ã2
2 2
H0 : Ã2 = Ã0 H1 : Ã2 = Ã0,
8
2
Ã0
2
(n - 1)Sn
Ç2 = ,
2
Ã0
n - 1 Ç2(n - 1)
Ä…
H0 H0 Ç2 < Ç2 (n - 1) Ç2 >
2
Ç2 Ä… (n-1) Ç2(n-1) p
1- p
2
n - 1
n 50


2

2(n - 1)Sn "

= 2Ç2
2
Ã0
"
N ( - 3, 1) H0
"2n "
Ä…
) + 2n - 3
" Ä… "H0 2Ç2 < -u(1 - 2
2Ç2 > u(1 - ) + 2n - 3 u(p) p
2
N (0, 1)
(X1, . . . , Xk) N (µX, Ã2)
(Y1, . . . , Yn) N (µY , Ã2)
2 2
Ã2 Xk Y SX SY
n
(Xi) (Yj)
H0 : µX = µY H1 : µX = µY .
8
"
Xk - Y kn
n
"
T = (k + n - 2),
2 2
(k - 1)SX + (k - 1)SY k + n
t t(k + n - 2) H0
Ä… Ä…
H0 T < -t1- (k + n - 2) T > t1- (k + n - 2)
2 2
2 2 2 2
H0 : ÃX = ÃY H1 : ÃX = ÃY .
8
2
SX
T = ,
2
SY
(k - 1, n - 1) H0
Ä…
H0 T < F (k - 1, n - 1) T >
2
Ä…
F1- (k - 1, n - 1) Fp(k - 1, n - 1) p
2
(k - 1, n - 1)
X xi
P (X = xi) i = 1, . . . , k
H0 : P (X = xi) = pi 1 i k,
p1, . . . , pk
(X1, . . . , Xn) X ni
xi n1 + . . . +
nk = n
k
"
(ni - npi)2
Ç2 = .
npi
i=1
" Ç2
k - 1 H0
Ç1-Ä…(k - 1) H0 Ç2 > Ç2 (k - 1)
1-Ä…
n 100 npi 5 i
X d
¸ ¸
¸ pi Ç2
k - d - 1
n " H0 Ç2 > Ç2 (k - d - 1)
1-Ä…
X
(a, b) -" a < b "
k
(a, x1], (x1, x2], . . . , (xk-1, b),
(xn) i
pi X i
H0
npi 5 i
ni X1, . . . , Xn
i
X F0
F0
X1, . . . , Xn
H0 X1, . . . , Xn
F
H0 : F = F0,
F0 H1 :
F = F0
8
Dn = sup |Fn(x) - F0(x)|,
-" Fn X1, . . . , Xn
Dn
H0
Ä…
Dn(Ä…)
PF (Dn > Dn(Ä…)) < Ä….
0
Dn(Ä…) H0
Ä…
F0
X1, . . . , Xn
F F
Dn X1, . . . , Xn
sup |Fn(x) - F0(x)|
-" Fn
Dn
x
( )
i
+
Dn = max - zi ,
1 i n
n
(
i - 1)
-
Dn = max zi - ,
1 i n
n
+ -
Dn = max{Dn , Dn },
zi = F (Xi:n)
n 100 Dn
"
nDn
1
Ä… [(1 - Ä…)"n, ") (p)
p


Wyszukiwarka

Podobne podstrony:
Matematyka Teoria Całka oznaczona
Wzory statystyka Matematyczna
STATYSTYKA MATEMATYCZNA w1
Tikhonenko O Wykłady ze statystyki matematycznej Wykład 6
Statystyka matematyczna zadania 2 F
Statystyka matematyczna zadania 3 F
statyst matemat chorob
Sciaga pl Statystyka matematyczna
MPiS30 W09 Podstawy statystyki matematycznej
Przykładowe zadanie statystyka matematyczna

więcej podobnych podstron