7090996915

7090996915



W. Guzicki: Zadania z kombinatoryki

ZADANIA Z KOMBINATORYKI

czyli o sztuce zliczania Wojciech Guzicki

Wykłady z kombinatoryki, które tu przedstawiam, są przeznaczone dla nauczycieli. Nie są natomiast podręcznikiem dla ucznia. Gdy uczę kombinatoryki w szkole, staram się nie nadużywać formalizmu i symboliki teoriomnogościowej. Definicje pojęć kombinatorycznych i podstawowe zasady kombinatoryczne podaję uczniom i zapisuję na tablicy słowami, bez odwoływania się do zapisu bardziej formalnego. Tak też formułuję większość zadań. W tym wykładzie w wielu miejscach będę postępował tak samo. Jednak — jak napisałem na początku — jest to wykład dla nauczycieli, do których można (a może nawet należy) mówić także językiem bardziej formalnym. Dobrze jest, by nauczyciel zobaczył, w jaki sposób można nieformalne rozumowania kombinatoryczne zapisać w języku, który poznał w czasie studiów wyższych. Tym językiem jest oczywiście język teorii mnogości.

Chcę jednak podkreślić, że formalizm na ogół utrudnia, a nie ułatwia zrozumienie — chyba, że jesteśmy z tym formalizmem bardzo dobrze oswojeni. Dla ucznia — niezależnie od tego, czy jest to uczeń gimnazjum czy liceum — formalizm teoriomnogościowy jest raczej nowością. Używanie formalizmu stawia zatem ucznia wobec podwójnej trudności: odczytania, o co naprawdę chodzi w zadaniu czy rozwiązaniu zadania i zrozumienia toku rozumowania zapisanego w niecodzienny (dla niego) sposób. Kombinatoryka jest takim działem matematyki, w którym prawie niepotrzebna jest bogata teoria. Rozumowania kombinatoryczne nie wykorzystują skomplikowanych pojęć matematycznych i wymagają właściwie tylko sprytnych pomysłów — inaczej mówiąc, zgodnie z nazwą tej dziedziny matematyki, kombinowania. Dlatego na ogół nie jest potrzebny żaden skomplikowany formalizm. Starajmy się przedstawić problemy kombinatoryczne w sposób jak najprostszy, językiem codziennym, najbardziej zrozumiałym dla ucznia, i oczekujmy od niego rozumowań wyrażonych w takim samym języku.

W niektórych sytuacjach formalizm staje się bardziej potrzebny. Dotyczy to nielicznych zadań pokazanych w tych wykładach. W tych zadaniach będę zatem takiego formalizmu używał. Pamiętajmy jednak, że są to zadania trudne, nieraz znacznie wykraczające ponad program szkolny, nierzadko są to zadania o trudnościach olimpijskich. Przytaczam je tutaj głównie po to, by pokazać nauczycielom, że w dość prosty sposób można uzyskać niebanalne rezultaty.

1. Podstawowe oznaczenia i terminologia

Wszystkie zbiory, z którymi w tych wykładach będziemy mieli do czynienia, są zbiorami skończonymi. Inaczej mówiąc, w tych wykładach będę pokazywać, na czym polega sztuka zliczania elementów zbiorów skończonych. Oczywiście nie tłumaczę uczniom, co to są zbiory skończone; zakładam, że istnieje coś takiego jak nasza wspólna intuicja skończoności. Skończone jest to, co daje się policzyć. Jeśli A jest zbiorem skończonym, to symbolem \A\ oznaczam liczbę elementów zbioru A. Nie będę używał określenia moc zbioru. Dla dowolnej liczby naturalnej n > 1 symbolem [n] będę oznaczał zbiór wszystkich liczb naturalnych od 1 do n. Ponadto [0] jest zbiorem pustym:

[n] = {1,..., n} dla n > 1,    [0] = 0.

Podstawową zasadą kombinatoryki, na której opierają się wszystkie dalsze rozważania, jest:

Inaczej mówiąc, zbiór [n] jest wzorcowym przykładem zbioru n-elementowego.

Ciągiem zerojedynkowym nazywam ciąg skończony (aj.,..., a„), którego każdy wyraz jest zerem lub jedynką, czyli taki, że

ai,...,a„ € {0,1}.

Zbiór wszystkich ciągów zerojedynkowych długości n będę oznaczał symbolem S(n). Symbolem Sfc(n) oznaczam zbiór wszystkich ciągów zerojedynkowych, w których jest dokładnie k wyrazów równych 1:

Sk{n) = {{cn,...,an) € S{n) \ |{i : Oj = 1}| = k}.

Warszawa, 19-20 października 2013 r.



Wyszukiwarka

Podobne podstrony:
W. Guzicki: Zadania z kombinatoryki Rozwiązanie. Postępujemy tak samo jak w zadaniu 10. Mamy dwa spo
10 W. Guzicki: Zadania z kombinatoryki Rozwiązanie. Mamy dwa sposoby rozwiązania zadania. W sposobie
W. Guzicki: Zadania z kombinatoryki 11 17.    W klasie liczącej 30 uczniów wielu uczn
12 W. Guzicki: Zadania z kombinatoryki Obszar o numerze III, zawarty wewnątrz lewego okręgu i na zew
W. Guzicki: Zadania z kombinatoryki 13 Te obszary także nazywamy składowymi. A więc okręgi należy na
14 W. Guzicki: Zadania z kombinatoryki 14 W. Guzicki: Zadania z kombinatoryki obszar W 7 obszarów wp
W. Guzicki: Zadania z kombinatoryki 15 Następnie z zacieniowanego zbioru usuwamy tę część, która jes
16 W. Guzicki: Zadania z kombinatoryki 19.    Ile jest liczb od 1 do 1000 włącznie da
W. Guzicki: Zadania z kombinatoryki 17 •    pierwsza czynność polega na rzuceniu kost
18 W. Guzicki: Zadania z kombinatoryki •    druga czynność polega na wybraniu drugiej
W. Guzicki: Zadania z kombinatoryki 19 •    jeśli pierwsza czynność kończy się wyniki
W. Guzicki: Zadania z kombinatoryki Tak więc na przykład (1,1,0,1,0,0,0,1) € S4(8),
W. Guzicki: Zadania z kombinatoryki Inaczej mówiąc, jeśli A = {ai,..., am} oraz
W. Guzicki: Zadania z kombinatoryki podzielna przez 7, więc do otrzymania odpowiedzi na pierwsze pyt
W. Guzicki: Zadania z kombinatoryki ile pełnych, siedmioelementowych grup. A więc 128. A jak jest w
W. Guzicki: Zadania z kombinatoryki jedynek. Nietrudno zauważyć, że spełnione są także dwa pozostałe
W. Guzicki: Zadania z kombinatoryki 6.    Udowodnij, że jeśli 0 < k < n, to
W. Guzicki: Zadania z kombinatoryki •    trójkę (1,5,8) łączymy w parę z ciągiem
Rozdział 2Elementy kombinatoryki oraz techniki zliczania 2.1 Wprowadzenie teoretyczne i przykłady Ni

więcej podobnych podstron