catechol eros rc031


CATECHOL 1
yields of homoallylic alcohols are obtained in a regiospecific man-
Catechol1
ner.
OH
OH
Si(OMe)3
PhCHO
(3)
Ph
catechol, Et3N
OH
CHCl3, reflux
88%
erythro:threo = 1:9
[120-80-9] C6H6O2 (MW 110.11)
InChI = 1/C6H6O2/c7-5-3-1-2-4-6(5)8/h1-4,7-8H
InChIKey = YCIMNLLNPGFGHC-UHFFFAOYAA
Carbonyl Protecting Group. Ketones and aldehydes
(reagent for heterocycle synthesis; allylation catalyst; carbonyl
react with catechol under acidic conditions to form cyclic acetals
protecting group; transition metal ligand)
(eq 4).12 The acetals formed are more stable to acid than ethylene
acetals.13 Cleavage of the o-phenylene acetals of Ä…-unbranched
Alternate Name: pyrocatechol.
ć% ć%
and aromatic ketones with BBr3 gives geminal dibromides and
Physical Data: mp 104 105 C; bp 119 121 C/10 mmHg;
ć%
vinyl bromides, respectively (eq 5).14
d 1.344 g cm-3; sublimable (vp 1.0 mmHg, 75 C); steam
volatile.
Solubility: sol benzene, acetone, ether, ethanol, 2.3 parts water, OH
t-BuCHO O
t-Bu
pyridine, aqueous alkali; slightly sol chlorinated solvents. (4)
TMSCl, CH2Cl2
H
Form Supplied in: colorless needles (or plates). O
91%
OH
Purification: recrystallization from toluene; distillation.
Handling, Storage, and Precautions: toxic (readily absorbed
through skin); irritant; causes burns. Light and air sensitive.
O Br Br
Explodes on contact with conc. HNO3. BBr3
Et
(5)
CH2Cl2, 0 °C
Et
Et Et
O
83%
Original Commentary
Bruce A. Barner
Transition Metal Ligand. Catechol binds readily to virtually
Union Carbide Corp., South Charleston, WV, USA
all transition metals, giving catecholato metal complexes.15 The
Ã- and Ä„-donating properties of catecholato ligands,16 as well as
Alkylation and Heterocycle Synthesis. Catechol undergoes
other hydroxo ligands,17 are postulated to stabilize unsaturated
many of the reactions characteristic of phenols, and as such is
organometallic derivatives.
used to prepare o-alkoxyphenols, o-dialkoxybenzenes, and
heterocycles.1 The high yield preparation of five-membered
o-phenylene heterocyclic systems from catechol is particularly
common, and includes 1,3,2-benzodioxaborole from diborane
(eq 1) (see Catecholborane),2 methylenedioxybenzene from
diiodomethane,3 o-phenylene carbonate from phosgene,4 1,3-
First Update
benzodioxoles from allenic derivatives,5 o-phenylene chloro- and
bromoboronates from the respective boron trihalides,6,7 and Aileen F. G. Bongat & Alexei V. Demchenko
o-phenylene phosphorochloridite from phosphorus trichloride.8 University of Missouri - St. Louis, St. Louis, MO, USA
Larger heterocyclic ring systems, such as 1,4-benzodioxanes
(eq 2)9 and dibenzo- and dicyclohexyl-18-crown-6 polyethers10 Acylation. Condensation reactions between catechol and
are prepared in good yields using alkylations of catechol. carboxylic acids or their derivatives are very common. The
reactions of catechol with esters can either be catalyzed by a
OH
O
BH3, THF base18 or an acid19 (eq 6). Carboxylic acids couple with catechol
(1)
B H
in the presence of dicyclohexylcarbodiimide (DCC) and catalytic
0 23 °C
O
OH 80%
4-dimethylaminopyridine (DMAP, eq 7).20
OTs
O
O
OH O
OH
OH
p-TsOH, DCM
(2)
+
K2CO3, DMF
rt, 3 h, 83%
O
OH 60 °C O
OH
75%
O O
Allylation Catalyst. Bis(catecholato)allylsiliconates, pre-
O
(6)
pared in situ from catechol, triethylamine, and allyl(trialkoxy)-
OH
silanes, are effective allylating agents for aldehydes (eq 3).11 Good
Avoid Skin Contact with All Reagents
2 CATECHOL
OC5H11 OH C(O)Cl
CH3CN, Et3N
OH
OC5H11
+
DCC, DMAP
rt, 71%
+
OH SeCl
CH2Cl2, rt, 20 h, 90%
O
OC5H11 OH
C(O)Cl
OH OC5H11
OC5H11
O
Se
(11)
O
OC5H11
HO
O
(7)
O
Electrophilic Aromatic Substitution Reactions. By virtue
OC5H11
of its aromatic nature, catechol typically undergoes electro-
O
philic aromatic substitution reactions such as halogenation,29
OC5H11
carboxylation,30 sulfonation,31 and Friedel Crafts acylation32
OC5H11
(eqs 12 15). In addition to these common classes of aromatic
substitution reactions, a solvent- and catalyst-free regioselective
Mannich-type reaction of catechol resulting in the exclusive
formation of o-substituted aminomethylated derivatives has been
Oxidation. Oxygen (O2) readily oxidizes catechol to o-
recently reported (eq 16).33
quinone in the presence of a suitable catalyst. In enzyme-catalyzed
transformations of this type, oxidases, such as tyrosinase21
and laccase,22 are often the catalysts of choice (eq 8). Salts OH OH
Br
Br2, CCl4
(12)
such as PbO2,23 Ag2O,24 or a combination of Pd(OAc)2-
80%
Cu(OAc)225 have also been employed as catalysts for this reaction.
OH OH
Br
Furthermore, catechol can be oxidatively opened to form useful
synthetic intermediates, for instance the (Z,Z)-monomethyl
muconate shown below (eq 9).26
OH
COOH
HO
OH
NaOH then CO2, 80 atm
OH O
cat laccase, O2 (13)
(8)
200 °C, 48 h, 54%
buffer, rt OH
HOOC
OH O
SO2Cl
OH OH
HSO3Cl
Me
(14)
OH
Cl O py 110 °C, 1.5 h, 37%
O2, pyridine
COOCH3 (9)
OH OH
ClO2S
+ Cu Cu
80 85%
COOH
Py O Cl
OH
Me
O O OH
OH
OH
AlCl3/NaCl
(15)
+ O
Functional Group Interconversion. Catechol can be trans-
OH
formed into more reactive intermediates through selective or
O
O
global conversion of its hydroxyl moieties. In the example below
(eq 10), catechol was converted into 1,2-bis(nonaflyl)benzene
OH
since the aromatic sulfonate functionality is more easily replaced
1 equiv ethyliminodiacetate
(16)
by a cyano group in the next step.27 It was noted that catechol
excess (CH2O)n, 50 °C, 70%
N
OH
reacted with polyfunctional 2-(chloroseleno)benzoyl chloride
CO2Et
OH
HO
in a different way than that of aliphatic alcohols. While in the
CO2Et
latter case faster O-acylation with the COCl moiety was
detected, reaction with catechol favored the O-selenylation
product (eq 11).28
Formation of Zwitterionic Pentacoordinate Silicates.
Recently, catechol was found to mediate Si C and Si O bond
1. Et3N OSO2C4F9
OH
2. C4F9SO2F
cleavage reactions in dialkoxy- (aminoorganyl)organylsilanes
DMF, 79% to afford spirocyclic 5Si silicates with an SiO4C framework
OSO2C4F9
OH
(eqs 17 and 18).34 These novel Si C cleavage reactions were
CN
applied to novel  traceless silicon-based linkage formation and
Pd(PPh3)4/Zn(CN)2
(10)
cleavage strategies for the synthesis of aromatic compounds on
DMF, 83%
CN solid phase.35
A list of General Abbreviations appears on the front Endpapers
CATECHOL 3
J. Org. Chem. 1974, 39, 1808. (c) Koo, J.; Avakian, S.; Martin, G. J.,
OEt
H J. Am. Chem. Soc. 1955, 77, 5373.
HO OH
10. Pedersen, C. J., Org. Synth., Coll. Vol. 1988, 6, 395.
Si N O
11. (a) Hosomi, A.; Kohra, S.; Tominaga, Y., J. Chem. Soc., Chem. Commun.
Ph H
1987, 1517. (b) Hayashi, T.; Matsumoto, Y.; Kiyoi, T.; Ito, Y.; Kohra, S.;
Tominaga, Y.; Hosomi, A., Tetrahedron Lett. 1988, 29, 5667.
12. Nishida, Y.; Abe, M.; Ohrui, H.; Meguro, H., Tetrahedron: Asymmetry
H 1993, 4, 1431.
O
O
(17)
Si NH O 13. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis,
2nd ed.; Wiley: New York, 1991; p 197.
H
O
O
14. Napolitano, E.; Fiaschi, R.; Mastrorilli, E., Synthesis 1986, 122.
15. Pierpont, C. G.; Buchanan, R. M., Coord. Chem. Rev. 1981, 38, 45.
16. Darensbourg, D. J.; Klausmeyer, K. K.; Mueller, B. L.; Reibenspies,
J. H., Angew. Chem., Int. Ed. Engl. 1992, 31, 1503.
17. Lunder, D. M.; Lobkovsky, E. B.; Streib, W. E.; Caulton, K. G., J. Am.
Chem. Soc. 1991, 113, 1837.
18. Gondi, S. R.; Son, D. Y., J. Sulfur Chem. 2005, 26, 13.
19. Wulferding, A.; Jankowski, J. H.; Hoffmann, M. R., Chem. Ber. 1994,
H
O
O
CH3O H
127, 1275.
Si NH
OH
HO
(18)
H3C Si N 20. Judele, R.; Laschat, S.; Baro, A.; Nimtz, M., Tetrahedron 2006, 62, 9681.
H
O
O
21. Wagreich, H.; Nelson, J. M., J. Biol. Chem. 1936, 115, 459.
CH3O
H
22. Leutbecher, H.; Conrad, J.; Klaiber, I.; Beifuss, U., Synlett 2005, 3126.
23. Stahl, P.; Kissau, L.; Mazitschek, R.; Huwe, A.; Furet, P.; Giannis, A.;
Waldmann, H., J. Am. Chem. Soc. 2001, 123, 11586.
24. Aebisher, D.; Brzostowska, E. M.; Mahendran, A.; Greer, A., J. Org.
Chem. 2007, 72, 2951.
25. Kawamura, Y.; Imai, T.; Hosokawa, T., Synlett 2006, 3110.
1. (a) Varagnat, J. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd
26. Rogic, M. M.; Demmin, T. R., J. Am. Chem. Soc. 1978, 100, 5472.
ed.; Wiley: New York, 1981; Vol. 13, p 39. (b) Raff, R. A. V.; Ettling,
B. V. Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed.; 27. Krempl, H.; Mattmer, R.; Hanack, M., Synlett 2000, 1705.
Wiley: New York, 1966; Vol. 11, p 462.
28. Osajda, M.; Mlochowski, J., Tetrahedron 2002, 58, 7531.
2. Brown, H. C.; Gupta, S. K., J. Am. Chem. Soc. 1971, 93, 1816.
29. Liu, H.; Liu, Y.; Liu, M.; Chen, C.; Xi, F., Tetrahedron Lett. 2001, 42,
3. Castillo, P.; Rodriguez-Ubis, J. C.; Rodriguez, F., Synthesis 1986, 839. 7083.
4. Hanslick, R. S.; Bruce, W. F.; Mascitti, A., Org. Synth., Coll. Vol. 1963, 30. Waters, S. P.; Kozlowski, M. C., Tetrahedron Lett. 2001, 42, 3567.
4, 788.
31. Schwert, D. D.; Richardson, N.; Ji, G.; Raduechel, B.; Ebert, W.; Heffner,
5. Cabiddu, S.; Cadoni, E.; Ciuffarin, E.; Fattuoni, C.; Floris, C., J. P. E.; Keck, R.; Davies, J. A., J. Med. Chem. 2005, 48, 7482.
Heterocycl. Chem. 1991, 28, 1573.
32. Dhananjeyan, M. R.; Milev, Y. P.; Kron, M. A.; Nair, M. G., J. Med.
6. Gerrard, W.; Lappert, M. F.; Mountfield, B. A., J. Chem. Soc. 1959, Chem. 2005, 48, 2822.
1529.
33. du Moulinet d Hardemare, A.; Jarjayes, O.; Mortini, F., Synth. Commun.
7. Singleton, D. A.; Redman, A. M., Tetrahedron Lett. 1994, 35, 509. 2001, 34, 3975.
8. Crofts, P. C.; Markes, J. H. H.; Rydon, H. N., J. Chem. Soc. 1958, 4250. 34. Richter, I.; Penka, M.; Tacke, R., Organometallics 2002, 21, 3050.
9. (a) Delgado, A.; Leclerc, G.; Lobato, M.-C.; Mauleon, D., Tetrahedron 35. Tacke, R.; Ulmer, B.; Wagner, B.; Arlt, M., Organometallics 2000, 19,
Lett. 1988, 29, 3671. (b) Martin, A. R.; Mallick, S. K.; Caputo, J. F., 5297.
Avoid Skin Contact with All Reagents


Wyszukiwarka

Podobne podstrony:
catechol sulfate eros rc034
phenylcopper eros rp058
peracetic?id eros rp034
palladium on?rium sulfate eros rp003
iodine eros ri005
benzyl bromide eros rb047
palladium II?etate eros rp001
zinc borohydride eros rz004
potassium permanganate eros rp244
nickel?talysts heterogeneous eros rn011
boric?id eros rb242
sodium amide eros rs041
hydrogen peroxide urea eros rh047
zinc bromide eros rz005
tin IV chloride zinc chloride eros eros rt115
sodium bromide eros rs054
nickel in charcoal eros rn00732
ozone eros ro030
paraformaldehyde eros rp018

więcej podobnych podstron