sodium amide eros rs041


SODIUM AMIDE 1
Sodium Amide ation.12 Selective deprotonation occurs with a wide variety of
acidic methyl, methylene, and methine hydrogens adjacent to car-
bonyls or attached to heterocycles. For example, 2,4-lutidine (5)
NaNH2
undergoes deprotonation (eq 3) to (6) followed by reaction with
ethyl benzoate to yield (7).13a Deprotonation followed by reac-
[7782-92-5] H2NNa (MW 39.02)
tion with electrophiles is a powerful method for generating com-
InChI = 1/H2N.Na/h1H2;/q-1;+1
plex carbon skeletons.13 Examination of the role of bases, includ-
InChIKey = ODZPKZBBUMBTMG-UHFFFAOYAF
ing sodamide, on the stereochemistry (including isomerization)
of products formed in the Michael reaction has been reported.14
(strong base;3 strong nucleophile38)
In the racemization of the single stereogenic center in nicotine,
sodamide was inferior to Potassium tert-Butoxide.15
Alternate Name: sodamide.
ć% ć%
Physical Data: mp 210 C; bp 400 C/760 mmHg.
ć%
Solubility: sol liq ammonia (<"1 mol L-1 at -33 C).1
NaNH2 PhCO2Et
Form Supplied in: commercially available as a powder; easily O
(3)
85%
prepared in the laboratory.
N N  N Ph
Preparative Methods: combination of Ammonia, small quan-
(5) (6) (7)
tities of an iron(III) salt, and Sodium leads to formation of a
black catalyst, whereupon the remainder of the sodium is added.
Published procedures differ in details.2
Dianion Generation. Numerous early investigations into
Handling, Storage, and Precautions: flammable; corrosive; when
dianion chemistry.16 employed sodamide as the base. Conversion
opened to air, decomposes and forms a potentially explosive
of the simple heterocycle (8) into the corresponding dianion with
yellow byproduct.1
sodamide in liquid ammonia followed by reaction with benzoni-
trile (eq 4) led to an interesting rearrangement product (9).17
²-Dicarbonyl dianions are routinely prepared by reaction with
Reaction as a Base. Sodamide often serves as a base to gen-
sodamide. These strongly nucleophilic species undergo regios-
erate reactive anions.3 In DMSO in the presence of various bases,
elective alkylation (eq 5) by reaction of disodioacetylacetone
including sodamide, carbohydrates are benzylated in good yield
with Benzyl Chloride.3a Reaction of (1) and (2) in the presence3b (10) (much more soluble in liquid ammonia than its dipotassium
counterpart16a) with 11-bromoundecanoic acid to give (11)18 and
of sodamide gives (3) (eq 1). Sodamide is effective in generat-
reaction of (10) (eq 6) with diphenyliodonium chloride to yield
ing the acetonitrile anion for reaction with sulfines.4 Deprotona-
(12).19
tion of phenylacetic esters in the presence of sodamide allows
aldol reaction with benzaldehyde derivatives to afford 2,3-diaryl-
O
3-hydroxypropionic acids.5 Similarly, reaction of acetophenone
O
NH2
and ethyl chloroacetate (eq 2) gives the Darzens product (4).6
PhCN
Treatment of primary anilines and cyanopyridines with sodamide
NH (4)
Ph
O
NaNH2
N
leads to good yields of carboxamidines.7 Oxygenation of hindered
58%
H
4-alkylphenols in the presence of sodamide provides a convenient
O
source of quinols.8
(8) (9)
Cl
Ph
O O
NaNH2
O O
Ph
H+
Cl
+ (1)
+ Br CO2Li
(5)
69% O ( )10 82% CO2H
Na+  
( )11
O
Na+
Cl
(10) (11)
(1) (2) (3)
O O
O
ClCH2CO2Et
H+
Ph
(10) + Ph2ICl
(2) (6)
O
60 64%
NaNH2 CO2Et
Ph Ph
(12)
62 64%
(4)
Sodamide in THF with boric acid neutralization has proven Elimination Reactions. Sodamide s utility as a reagent for
effective for the deconjugation of conjugated unsaturated elimination reactions is illustrated by the following selected ex-
steroids.9 The presence of sodamide in liquid ammonia at low amples. Methiodide (13) undergoes facile loss of HI and diethyl-
temperature facilitates interconversion of 1,4- and 1,3-cyclo- methylamine to generate methyl vinyl ketone.20 Five isomeric
hexadienes.10 Deprotonation of 2-bromothiophenes and 2- alkenes and a cyclopropane result from treatment of 2-benzyl-3-
halothianaphthalenes affords the 3-halo isomers via a series of phenylpropyltrimethylammonium iodide with sodamide.21 Upon
complex equilibria.11 Cyclopropenes, which possess an acidity reaction with sodamide, various thioamides eliminate hydrogen
comparable to alkynes, are rapidly metalated by sodamide (and sulfide to form ynamines in fair yield.22 In the presence of
other alkali amides) to produce reactive intermediates for alkyl- sodamide, cis-1,4-dichloro-2-butene (14) yields mainly trans-
Avoid Skin Contact with All Reagents
2 SODIUM AMIDE
3.5 equiv NaNH2
1-chloro-1,3-butadiene (15) (eq 7) while trans-1,4-dichloro-2-
HO (12)
NH3, NH4Cl
butene gives a preponderence of cis-1-chloro-1,3-butadiene (16) O
75 85%
Cl
(eq 8).23 Upon warming a mixture of methallyl chloride (17) and
(24) (25)
sodamide (eq 9), there is formed methylenecyclopropane (18) and
1-methylcyclopropene (19)24 Sodamide, Sodium Hydride, and
Sodium Methoxide all have utility in the Bamford Stevens reac-
Aryne Chemistry. Among the many existing methods for the
tion for the conversion of tosylhydrazones into alkenes.25
generation of arynes,.31 reaction of a halobenzene derivative with
sodamide (as in the example (eq 13) of (26) going to (27)32a) is
Et
Et Me
a commonly employed procedure.32 The highly reactive interme-
N +
diate arynes can be made to undergo reaction with nucleophiles
I
other than amide anion. Thus bromobenzene (28) is converted
(eq 14) into aryl sulfide (29).33a Sodamide-generated arynes have
O
also been reacted with more complex species,34 as illustrated by
(13)
the transformation (eq 15) of (30) into (31) followed by cycliza-
tion to (32)34a Intramolecular benzyne reactions involving so-
Cl
NaNH2
damide have been used successfully in the synthesis of aporphine
(7)
Cl Cl
52%
alkaloids.35
(14)(15)
H
Br N
NaNH2 RNH2
R
(13)
68 85%
Cl
NaNH2
(8)
Cl
72%
OMe OMe OMe
Cl
(26) (27)
(16)
Br SEt
NaNH2 HMPA THF EtSH
(14)
+ (9)
NaNH2 52%
72%
Cl
(28) (29)
(17) (18) (19)
CN

NaNH2
Preparation of Alkynes. Sodamide-mediated elimination of
one or two moles of HX from a suitable substrate is a classical CN 64 66%
Cl
method for the synthesis of alkynes. For example, ²-bromostyrene
(30)(31)
with sodamide in liquid ammonia provides an excellent source of
phenylacetylene.26 Cyclohexylpropyne (21) can be generated by
(15)
reaction (eq 10) of vinyl bromide (20) with 3 equiv (excess) of
CN
sodamide.27 Oleic acid (22) can be transformed into stearolic acid
(32)
(23) by a straightforward sequence (eq 11) involving bromination
followed by reaction with excess sodamide.28 Similar method-
ology has been employed to synthesize many other alkynes.29 Generation of Ylides. Sodamide is a common base for the
Dehydrohalogenation with concomitant ether cleavage provides
generation of ylides in the Wittig reaction.36 The commercially
an efficient route to complex alkynes. For example, reaction of
available instant ylide consists37a of a 1:1 stoichiometric mixture
(24) with sodamide (eq 12) provides the hydroxylic terminal pen-
of Methyltriphenylphosphonium Bromide and sodium amide
tyne (25)29j Alkyne allene isomerization has been accomplished
(eq 16).37b
with sodamide.30
O O
Br PPh3MeBr" NaNH2
3 equiv NaNH2
THF
(10)
N N
66%
54%
(20) (21)
(16)
N N
1. Br2
CO2H
( )7
2. 3 equiv NaNH2, H+
( )7
42 52%
Reaction as a Nucleophile. Nucleophilic addition reactions
(22)
CO2H
are a major feature of sodamide chemistry. Addition followed
(11)
( )7 ( )7
by intramolecular attack provides a convenient methodology
(23)
for the construction of unusual adducts.38 Sodamide, sodamide/
A list of General Abbreviations appears on the front Endpapers
SODIUM AMIDE 3
potassamide mixtures, and other alkali metal amides have been Sodium Amide Sodium tert-Butoxide).52 Typical applications of
found to catalyze the amination of alkenes.39 The Chichibabin these bases are in the syn elimination depicted52d by (39) going to
reaction and its variants40 provide a useful route to numerous (40) and (41) (eq 22) and the carbanion alkylation involving the
substituted heterocycles. The addition elimination reaction of so- conversion of (42) to(43) (eq 23).52f
damide on a heterocyclic substrate is nicely illustrated by the
transformation (eq 17) of (33) into 6-methylisocytosine (34)41 Br
+
(22)
Nucleophilic addition reactions to nitro-substituted aromatic sub-
Br Cl
Cl
strates have been observed.42 Also intriguing are the various reac-
tion pathways observed for heterocycles containing an appended (40)(41)
(39)
trifluoromethyl group.43 Photochemically assisted additions of
NaNH2, t-BuONa, 87% 65:35
sodamide have been reported (eq 18).44 Sodamide is also an
NaNH2, t-BuONa, 15-crown-5, 76% 3:97
effective reagent for accomplishing N-dealkylations (eq 19)45a
and N-deacylations.45b
CHO
NaNH2, t-BuONa
(23)
CHO
PhCH2Br
O
O
84% Ph
(42) (43)
NaNH2 HN
HN
(17)
52%
H2N N
MeO N Related Reagents. Lithium Amide; Potassium Amide; Potas-
(33)(34) sium t-Butoxide; Sodium Amide Sodium t-Butoxide; Sodium
Ammonia; Sodium Hydride.
H2N
h½, NaNH2
1. Fieser & Fieser 1967, 1, 1034.
(18)
NH3, Et2O
2. (a) Vaughn, T. H.; Vogt, R. R.; Nieuwland, J. A., J. Am. Chem. Soc. 1934,
57%
56, 2120. (b) Hauser, C. R.; Adams, J. T.; Levine, R., Org. Synth., Coll.
Vol. 1955, 3, 291. (c) Hauser, C. R.; Dunnavant, W. R., Org. Synth. 1960,
40, 38. (d) Jones, E. R. H.; Eglinton, G.; Whiting, M. C.; Shaw, B. L
Org. Synth., Coll. Vol. 1963, 4, 404. (e) Khan, N. A.; Deatherage, F. E.;
Et
Brown, J. B., Org. Synth., Coll. Vol. 1963, 4, 851. (f) Greenlee, K. W.;
NaNH2
N N HN N
(19)
Henne, A. L., Inorg. Synth. 1946, 2, 128.
NH3
O 97% O 3. (a) Iwashige, T.; Saeki, H., Chem. Pharm. Bull. 1967, 15, 1803.
(b) Ireland, R. E.; Kierstead, R. C., J. Org. Chem. 1966, 31, 2543.
4. Loontjes, J. A.; van der Leij, M.; Zwanenberg, B., Recl. Trav. Chim.
Pays-Bas 1980, 99, 39.
Cleavage and Rearrangement. Sodamide is involved in
5. Kratchanov, C. G.; Kirtchev, N. A., Synthesis 1971, 317.
many cleavage and rearrangement reactions. Cleavage re-
actions,46 with specific reference to the Haller Bauer reaction,47 6. Allen, C. F. H.; VanAllan, J., Org. Synth., Coll. Vol. 1955, 3, 727.
7. Hisano, T.; Tasaki, M.; Tsumoto, K.; Matsuoka, T.; Ichikawa, M., Chem.
exemplified by (35) going to (36) (eq 20),47d are a convenient
Pharm. Bull. 1983, 31, 2484.
synthetic transform. It is significant that the addition of 1,4-
8. Nishinaga, A.; Itahara, T.; Matsuura, T., Bull. Chem. Soc. Jpn. 1975, 48,
Diazabicyclo[2.2.2]octane (DABCO) permits the Haller Bauer
1683.
reaction to be performed with commercial sodamide.47d Rear-
9. Shapiro, E. L.; Leggatt, T.; Weber, L.; Olivetto, E. P.; Tanabe, M.; Crowe,
rangement reactions involving sodamide are well-known,48 with
D. F., Steroids 1964, 3, 183.
several being common name reactions such as the Truce Stiles,49
10. Rabideau, P. W.; Huser, D. L., J. Org. Chem. 1983, 48, 4266.
the Sommelet Hauser,50a and the Stevens50a reactions. A typi-
11. (a) Reinecke, M. G.; Hollingworth, T. A., J. Org. Chem. 1972, 37, 4257.
cal Sommelet Hauser rearrangement is illustrated by (37) going
(b) Brandsma, L.; de Jong, R. L. P., Synth. Commun. 1990, 20, 1697.
to (38) (eq 21).50b Vinylpyridines undergo polymerization in
12. (a) Schipperijn, A. J.; Smael, P., Recl. Trav. Chim. Pays-Bas 1973, 92,
sodamide/liquid ammonia.51
1121. (b) Schipperijn, A. J.; Smael, P., Recl. Trav. Chim. Pays-Bas 1973,
92, 1159.
O O
3 equiv NaNH2 13. (a) Levine, R.; Dimmig, D. A.; Kadunce, W. M., J. Org. Chem. 1974,
Ph Ph Ph NH2 (20) 39, 3834. (b) Yamamoto, M.; Sugiyama, N., Bull. Chem. Soc. Jpn. 1975,
3 equiv DABCO, PhH, heat
48, 508. (c) Kaiser, E. M.; Bartling, G. J.; Thomas, W. R.; Nichols, S.
73%
(35)(36)
B.; Nash, D. R., J. Org. Chem. 1973, 38, 71. (d) Harris, T. M.; Harris, C.
M.; Wachter, M. P., Tetrahedron 1968, 24, 6897. (e) Vanderwerf, C. A.;
Lemmermann, L. V., Org. Synth., Coll. Vol. 1955, 3, 44. (f) Coffman, D.
NaNH2
D., Org. Synth., Coll. Vol. 1955, 3, 320. (g) Hauser, C. R.; Adams, J. T.;
(21)
+
Levine, R., Org. Synth., Coll. Vol. 1955, 3, 291. (h) Potts, K. T.; Saxton,
NMe3 I NH3 NMe2
97%
J. E., Org. Synth. 1960, 40, 68. (i) Kaiser, E. M.; Bartling, G. J., J. Org.
(37)(38)
Chem. 1972, 37, 490. (j) Rash, F. H.; Boatman, S.; Hauser, C. R., J. Org.
Chem. 1967, 32, 372.
In recent years, sodamide has been combined with other
14. (a) Gospodova, T. S.; Stefanovsky, Y. N., Monatsh. Chem. 1990, 121,
bases (especially with alkali metal t-butoxides) to create a whole
275. (b) Viteva, L. Z.; Stefanovsky, Y. N., Monatsh. Chem. 1982, 113,
family of so-called complex bases with exceptional properties (see 181.
Avoid Skin Contact with All Reagents
4 SODIUM AMIDE
15. Tsujino, Y.; Shibata, S.; Katsuyama, A.; Kisaki, T.; Kaneko, H., 36. (a) Moiseenkov, A. M.; Schaub, B.; Margot, C.; Schlosser, M.,
Heterocycles 1982, 19, 2151. Tetrahedron Lett. 1985, 26, 305. (b) Schaub, B.; Blaser, G.; Schlosser,
M., Tetrahedron Lett. 1985, 26, 307. (c) Schlosser, M.; Schaub, B.; de
16. (a) Harris, T. M.; Harris, C. M., Org. React. 1969, 17, 155. (b) Harris, T.
Oliveira-Neto, J.; Jeganathan, S., Chimia 1986, 40, 244. (d) Schaub, B.;
M.; Harris, C. M., J. Org. Chem. 1966, 31, 1032.
Jeganathan, S.; Schlosser, M., Chimia 1986, 40, 246. (e) Dauphin, G.;
17. Kashima, C.; Yammamoto, M.; Kobayashi, S.; Sugiyama, N., Bull.
David, L.; Duprat, P.; Kergomard, A.; Veshambre, H., Synthesis 1973,
Chem. Soc. Jpn. 1974, 47, 1805.
149. (f) Takahashi, H.; Fujiwara, K.; Ohta, M., Bull. Chem. Soc. Jpn.
18. Pendarvis, R. O.; Hampton, K. G., J. Org. Chem. 1974, 39, 2289.
1962, 35, 1498. (g) Yamamoto, Y.; Schimidbaur, H., J. Chem. Soc., Chem.
19. Hampton, K. G.; Harris, T. M.; Hauser, C. R., Org. Synth. 1971, 51, 128.
Commun. 1975, 668. (h) Quast, H.; Jakobi, H., Chem. Ber. 1991, 124,
20. (a) duFeu, E. C.; McQuillin, F. J.; Robinson, R., J. Chem. Soc. 1937, 53. 1619.
(b) Cornforth, J. W.; Robinson, R., J. Chem. Soc. 1949, 1855.
37. (a) Schlosser, M.; Schaub, B., Chimia 1982, 36, 396. (b) Ciana, L.
21. Bumgardner, C. L.; Iwerks, H., J. Am. Chem. Soc. 1966, 88, 5518. D.; Dressick, W. J.; von Zelewsky, A., J. Heterocycl. Chem. 1990, 27,
163.
22. Halleux, A.; Reimlinger, H.; Viehe, H. G., Tetrahedron Lett. 1970, 3141.
38. (a) Barnard, I. F.; Elvidge, J. A., J. Chem. Soc., Perkin Trans. 1
23. Heasley, V. L.; Lais, B. R., J. Org. Chem. 1968, 33, 2571.
1983, 1813. (b) Yamagouchi, K., Bull. Chem. Soc. Jpn. 1976, 49,
24. (a) Fisher, F.; Applequist, D. E., J. Org. Chem. 1965, 30, 2089. (b) Salaun,
1366.
J. R.; Conia, J. M., J. Chem. Soc., Chem. Commun. 1971, 1579. (c) Koster,
39. Pez, G. P.; Galle, J. E., Pure Appl. Chem. 1985, 57, 1917.
R.; Arora, S.; Binger, P., Synthesis 1971, 322. (d) Arora, S.; Binger,
P.; Koster, R., Synthesis 1973, 146. (e) Fitjer, L.; Conia, J.-M., Angew. 40. Vorbruggen, H., Adv. Heterocycl. Chem. 1990, 49, 117.
Chem., Int. Ed. Engl. 1973, 12, 332.
41. Botta, M.; De Angelis, F.; Finizia, G.; Gambacorta, A.; Nicoletti, R.,
25. Kirmse, W.; von Bullow, B.-G.; Schepp, H., Justus Liebigs Ann. Chem. Synth. Commun. 1985, 15, 27.
1966, 691, 41.
42. Gandhi, S. S.; Gibson, M. S.; Kaldas, M. L.; Vines, S. M., J. Org. Chem.
26. Vaughan, T. H.; Vogt, R. R.; Nieuwland, J. A., J. Am. Chem. Soc. 1934, 1979, 44, 4705.
56, 2120.
43. (a) Kobayashi, Y.; Kumadaki, I.; Taguchi, S.; Hanzawa, Y., Tetrahedron
27. Lespieau, R.; Bourguel, M., Org. Synth., Coll. Vol. 1941, 1, 191. Lett. 1970, 3901. (b) Kobayashi, Y.; Kumadaki, I.; Hanzawa, Y.; Minura,
M., Chem. Pharm. Bull. 1975, 23, 2044. (c) Kobayashi, Y.; Kumadaki,
28. Khan, N. A.; Deatherage, F. E.; Brown, J. E., Org. Synth., Coll. Vol. 1963,
I.; Hanzawa, Y.; Mimura, M., Chem. Pharm. Bull. 1975, 23, 636.
4, 851.
(d) Kobayashi, Y.; Kumudaki, I.; Taguchi, S.; Hanzawa, Y., Chem.
29. (a) Khan, N. A., Org. Synth., Coll. Vol. 1963, 4, 969. (b) Ashworth, P. J.;
Pharm. Bull. 1972, 20, 1047.
Mansfield, G. H.; Whiting, M. C., Org. Synth., Coll. Vol. 1963, 4, 128.
44. Tintel, C.; Rietmeyer, F. J.; Cornelisse, J., Recl. Trav. Chim. Pays-Bas
(c) Messeguer, A.; Serratosa, F.; Rivera, J., Tetrahedron Lett.. 1973, 2895.
1983, 102, 224.
(d) Armitage, J. B.; Jones, E. R. H.; Whiting, M. C., J. Chem. Soc. 1953,
3317. (e) Bohlmann, F., Chem. Ber. 1951, 84, 545. (f) Jones, E. R. H.; 45. (a) Hirai, Y.; Egawa, H.; Yamada, S.; Yamazaki, T., Heterocycles 1983,
Eglinton, G.; Whiting, M. C. Shaw, B. L., Org. Synth., Coll. Vol. 1963, 20, 1243. (b) Fraenkel, G.; Cooper, J. W., J. Am. Chem. Soc. 1971, 93,
4, 404. (g) Wasserman, H. H.; Wharton, P. S., J. Am. Chem. Soc. 1960, 7228.
82, 661. (h) Newman, M. S.; Geib, J. R.; Stalick, W. M., Org. Prep.
46. (a) Furukawa, N.; Tanaka, H.; Oae, S., Bull. Chem. Soc. Jpn. 1968,
Proced. Int. 1972, 4, 89. (i) Brandsma, L.; Harryvan, E.; Arens, J. F.,
41, 1463. (b) Shiotani, S.; Kometani, T., Chem. Pharm. Bull. 1973, 21,
Recl. Trav. Chim. Pays-Bas 1968, 87, 1238. (j) Jones, E. R. H.; Eglinton,
1160.
G.; Whiting, M. C., Org. Synth., Coll. Vol. 1963, 4, 755.
47. (a) Hamlin, K. E.; Weston, A. W., Org. React. 1957, 9, 1. (b) Alexander, E.
30. (a) Carr, M. D.; Gan, L. H.; Reid, I., J. Chem. Soc., Perkin Trans. 2 1973,
C.; Tom, T., Tetrahedron Lett. 1978, 1741. (c) Paquette, L. A.; Maynard,
672. (b) Montijn, P. P.; Kupecz, A.; Brandsma, L.; Arens, J. F., Recl.
G. D., J. Org. Chem. 1989, 54, 5054. (d) Kaiser, E. M.; Warner, C. D.,
Trav. Chim. Pays-Bas 1969, 88, 958.
Synthesis 1975, 395.
31. Hoffmann, R. W., Dehydrobenzene and Cycloalkynes; Academic: New
48. (a) Mason, J. G.; Youssef, A. K.; Ogliaruso, M. A., J. Org. Chem. 1975,
York, 1967.
40, 3015. (b) Youssef, A. K.; Ogliaruso, M. A., J. Org. Chem. 1973, 38,
32. (a) Biehl, E. R.; Patrizi, R.; Reeves, P. C., J. Org. Chem. 1971, 36, 3252. 3998. (c) Sarel, S.; Klug, J. T.; Taube, A., J. Org. Chem. 1970, 35, 1850.
(b) Biehl, E. R.; Stewart, W.; Marks, A.; Reeves, P. C., J. Org. Chem. (d) Klein, K. P.; Hauser, C. R., J. Org. Chem. 1966, 31, 4275.
1979, 44, 3674. (c) Levine, R.; Biehl, E. R., J. Org. Chem. 1975, 40,
49. Crowther, G. P.; Hauser, C. R., J. Org. Chem. 1968, 33, 2228.
1835. (d) Biehl, E. R.; Smith, S. M.; Reeves, P. C., J. Org. Chem. 1971,
50. (a) Pine, S. H., Org. React. 1970, 18, 403. (b) Kantor, S. W.; Hauser, C.
36, 1841. (e) Biehl, E. R.; Nieh, E.; Hsu, K. C., J. Org. Chem. 1969, 34,
R., J. Am. Chem. Soc. 1951, 73, 4122. (c) Giumanini, A. G.; Trombini,
3595. (f) Biehl, E. R.; Hsu, K. C.; Nieh, E., J. Org. Chem. 1970, 35, 2454.
C.; Lercker, G.; Lepley, A. R., J. Org. Chem. 1976, 41, 2187.
(g) Kraakman, P. A.; Valk, J.-M.; Niederländer, H. A. G.; Brower, D. B.
51. Laurin, D.; Parravano, G., J. Polym. Sci. Part A-1, Polym. Chem. Ed.
E.; Bickelhaupt, F. M.; de Wolf, W. H.; Bickelhaupt, F.; Stam, C. H., J.
1968, 6, 1047.
Am. Chem. Soc. 1990, 112, 6638. (h) Apeloig, Y.; Arad, D.; Halton, B.;
52. (a) Caubere, P., Acc. Chem. Res. 1974, 7, 301. (b) Caubere, P., Top.
Randall, C. J., J. Am. Chem. Soc. 1986, 108, 4932.
Curr. Chem. 1978, 73, 49. (c) Ndebeka, G.; Raynal, S.; Caubere, P., J.
33. (a) Caubere, P., Bull. Soc. Chem. Fr. 1967, 3446, 3451. (b) Carre, M.
Org. Chem. 1980, 45, 5394. (d) Croft, A. P.; Bartsch, R. A., J. Org.
C.; Ezzinadi, A. S.; Zouaoui, M. A.; Geoffroy, P.; Caubere, P., Synth.
Chem. 1983, 48, 876. (e) Croft, A. P.; Bartsch, R. A., Tetrahedron Lett.
Commun. 1989, 19, 3323.
1983, 24, 2737. (f) Carre, M. C.; Ndebeka, G.; Riondel, A.; Bourgasser,
34. (a) Skorcz, J. A.; Kaminski, F. E., Org. Synth. 1968, 48, 53. (b)
P.; Caubere, P., Tetrahedron Lett. 1984, 25, 1551. (g) Raynal, S., Eur.
Carre, M.-C.; Gregoire, B.; Caubere, P., J. Org. Chem. 1984, 49, 2050.
Polym. J. 1986, 22, 559.
(c) Loubinoux, B.; Caubere, P., Synthesis 1974, 201. (d) Buske, G. R.;
Ford, W. T., J. Org. Chem. 1976, 41, 1995.
John L. Belletire & R. Jeffery Rauh
35. Kametani, T.; Fukumoto, K.; Nakano, T., J. Heterocycl. Chem. 1972, 9,
The University of Cincinnati, Cincinnati, OH, USA
1363.
A list of General Abbreviations appears on the front Endpapers


Wyszukiwarka

Podobne podstrony:
sodium bromide eros rs054
potassium amide eros rp193
sodium hypophosphite eros rs086
sodium iodide eros rs087
sodium perborate eros rs094
sodium percarbonate eros rn00950
sodium hydride eros rs073
sodium ethoxide eros rs070
sodium amalgam eros rs040
sodium hypochlorite eros rs084
sodium borohydride eros rs052
sodium nitrite eros rs092
sodium azide eros rs045
sodium permanganate eros rs097
sodium alcohol eros rs037
sodium eros rs036
phenylcopper eros rp058
peracetic?id eros rp034
palladium on?rium sulfate eros rp003

więcej podobnych podstron