P16 065

background image

65. The rotational inertia for an axis through A is I

cm

+ mh

2
A

and that for an axis through B is I

cm

+ mh

2
B

.

Using Eq. 16-29, we require

2π



I

cm

+ mh

2
A

mgh

A

= 2π



I

cm

+ mh

2
B

mgh

B

which (after canceling 2π and squaring both sides) becomes

I

cm

+ mh

2
A

mgh

A

=

I

cm

+ mh

2
B

mgh

B

.

Cross-multiplying and rearranging, we obtain

I

cm

(h

B

− h

A

) = m



h

A

h

2
B

− h

B

h

2
A



= mh

A

h

B

(h

B

− h

A

)

which simplifies to I

cm

= mh

A

h

B

. We plug this back into the first period formula above and obtain

T = 2π



mh

A

h

B

+ mh

2
A

mgh

A

= 2π



h

B

+ h

A

g

.

From the figure, we see that h

B

+ h

A

= L, and (after squaring both sides) we can solve the above

equation for the gravitational acceleration:

g =



2π

T



2

L =

4π

2

L

T

2

.


Document Outline


Wyszukiwarka

Podobne podstrony:
p38 065
p05 065
p39 065
P16 052
P16 071
P16 067
Plan P16 Kraska rys planu
P16 094
065
P16 096
P16 018
P24 065
P16 037
F F 065
P16 097
P16 087
P16 079
p14 065

więcej podobnych podstron