P20 078

background image

78. It is straightforward to show, from Eq. 20-11, that for any process that is depicted as a straight line on

the pV diagram, the work is

W

straight

=



p

i

+ p

f

2



V

which includes, as special cases, W = pV for constant-pressure processes and W = 0 for constant-
volume processes. Also, from the ideal gas law in ratio form (see Sample Problem 1), we find the final
temperature:

T

2

= T

1



p

2

p

1

 

V

2

V

1



= 4T

1

.

(a) With ∆V = V

2

− V

1

= 2V

1

− V

1

= V

1

and p

1

+ p

2

= p

1

+ 2p

1

= 3p

1

, we obtain

W

straight

=

3

2

(p

1

V

1

) =

3

2

nRT

1

where the ideal gas law is used in that final step.

(b) With ∆T = T

2

− T

1

= 4T

1

− T

1

= 3T

1

and C

V

=

3
2

R, we find

E

int

= n



3

2

R



(3T

1

) =

9

2

nRT

1

.

(c) The energy added as heat is Q = ∆E

int

+ W

straight

= 6nRT

1

.

(d) The molar specific heat for this process may be defined by

C

straight

=

Q

nT

=

6nRT

1

n (3T

1

)

= 2R .


Document Outline


Wyszukiwarka

Podobne podstrony:
P20 021
P20 HH Mod
P20 028
P20 080
P20 004
P20 060
P20 049
P20 057
P28 078
P20 089
P25 078
polNP 078 ac
P20 045
P18 078
p39 078
P20 018
P20 047
078 Ustawa o szczeg lnych warunkach sprzeda y konsumenckiej

więcej podobnych podstron