p10 033

background image

33. As hinted in the problem statement, the velocity v of the system as a whole – when the spring reaches

the maximum compression x

m

– satisfies m

1

v

1i

+ m

2

v

2i

= (m

1

+ m

2

)v. The change in kinetic energy of

the system is therefore

K

=

1

2

(m

1

+ m

2

)v

2

1

2

m

1

v

2

1i

1

2

m

2

v

2

2i

=

(m

1

v

1i

+ m

2

v

2i

)

2

2 (m

1

+ m

2

)

1

2

m

1

v

2

1i

1

2

m

2

v

2

2i

which yields ∆K =

35 J. (Although it is not necessary to do so, still it is worth noting that algebraic

manipulation of the above expression leads to

|K| =

1
2



m

1

m

2

m

1

+m

2



v

2

rel

where v

rel

= v

1

−v

2

). Conservation

of energy then requires

1

2

kx

2
m

=

K =⇒ x

m

=



2∆K

k

=



2(35)

1120

which gives the result x

m

= 0.25 m.


Document Outline


Wyszukiwarka

Podobne podstrony:
p10 027
p44 033
p10 060
p10 038
p39 033
P15 033
Metoda Aveza i jej Uogólnienia 07 Dawidowicz p10
033 (2)
09 2005 030 033
p10 014
J H 033
p10 051
p10 021
p10 075
P30 033
p10 067
p10 009

więcej podobnych podstron