p44 033

background image

33. The height of the Coulomb barrier is taken to be the value of the kinetic energy K each deuteron must

initially have if they are to come to rest when their surfaces touch (see Sample Problem 44-4). If r is
the radius of a deuteron, conservation of energy yields

2K =

1

4πε

0

e

2

2r

,

so

K =

1

4πε

0

e

2

4r

= (8.99

× 10

9

V

·m/C)

(1.60

× 10

19

C)

2

4(2.1

× 10

15

m)

= 2.74

× 10

14

J = 170 keV .


Document Outline


Wyszukiwarka

Podobne podstrony:
p44 054
p44 004
p44 046
p39 033
P15 033
P44 3
033 (2)
09 2005 030 033
p10 033
J H 033
p44 022
p44 029
p44 042
P30 033
p44 043
p44 007

więcej podobnych podstron