00 Contents

background image

Nanobiotechnology

Edited by
C. M. Niemeyer and
C. A. Mirkin

Nanobiotechnology. Edited by Christof Niemeyer, Chad Mirkin
Copyright

c 2004 WILEY-VCH Verlag GmbH & Co. K aA, Weinheim

ISBN 3-527-30658-7

G

background image

Further Titles of Interest

V. Balzani, A. Credi, M. Venturi

Molecular Devices and Machines

2003, ISBN 3-527-30506-8

M. Schliwa (ed.)

Molecular Motors

2002, ISBN 3-527-30594-7

Ch. Zander, J. Enderlein, R. A. Keller (eds.)

Single Molecule Detection in Solution

2002, ISBN 3-527-40310-8

E. Bäuerlein (ed.)

Biomineralization –
From Biology to Biotechnology and Medical Application

2000, ISBN 3-527-29987-4

background image

Nanobiotechnology

Concepts, Applications and Perspectives

Edited by
Christof M. Niemeyer and Chad A. Mirkin

background image

Edited by

Prof. Dr. Christof M. Niemeyer
Universität Dortmund, Fachbereich Chemie
Biologisch-Chemische Mikrostrukturtechnik
Otto-Hahn-Str. 6
44227 Dortmund
Germany
cmn@chemie.uni-dortmund.de

Prof. Dr. Chad A. Mirkin
Department of Chemistry &
Institute for Nanotechnology
Northwestern University
2145 Sheridan Road
Evanston, IL 60208-3113
USA
camirkin@chem.northwestern.edu

Cover illustration
Malign (top) and normal cells (bottom) on pillar
interfaces which sense cellular forces. In the middle
illustration, the molecular distribution of integrin
(green) and actin (red) is shown. All micrographs
were kindly provided by W. Roos, J. Ulmer, and
J.P. Spatz (University of Heidelberg, Germany).

This book was carefully produced. Never-
theless, editors, authors and publisher do
not warrant the information contained
therein to be free of errors. Readers are
advised to keep in mind that statements,
data, illustrations, procedural details or
other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available
from the British Library.

Bibliographic information published by
Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication
in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the
Internet at http://dnb.ddb.de.

c 2004 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim

All rights reserved (including those of
translation in other languages). No part of
this book may be reproduced in any form –
by photoprinting, microfilm, or any other
means – nor transmitted or translated into
machine language without written permis-
sion from the publishers. Registered names,
trademarks, etc. used in this book, even
when not specifically marked as such, are
not to be considered unprotected by law.

Printed in the Federal Republic of Germany.
Printed on acid-free paper.

Typesetting

Hagedorn Kommunikation,

Viernheim
Printing

betz-druck gmbh, Darmstadt

Bookbinding

J. Schäffer GmbH & Co. KG,

Grünstadt

ISBN

3-527-30658-7

background image

Contents

Part I

Interphase Systems

1

Biocompatible Inorganic Devices

1

Thomas Sawitowski

1.1

Introduction

1

1.2

Implant Coatings

1

1.2.1

Stents

2

1.2.2

Seeds

7

1.3

Conclusion

10

2

Microfluidics Meets Nano:
Lab-on-a-Chip Devices and their Potential for Nanobiotechnology

13

Holger Bartos, Friedrich Götz, and Ralf-Peter Peters

2.1

Introduction

13

2.2

Overview

13

2.2.1

Definition and History

13

2.2.2

Advantages of Microfluidic Devices

14

2.2.3

Concepts for Microfluidic Devices

15

2.2.4

Fluid Transport

17

2.2.5

Stacking and Sealing

18

2.3

Methods

19

2.3.1

Materials for the Manufacture of Microfluidic Components

19

2.3.1.1

Silicon

19

2.3.1.2

Glass

19

2.3.1.3

Polymers

20

2.3.2

Fluidic Structures

21

2.3.3

Fabrication Methods

23

2.3.4

Surface Modifications

23

2.3.5

Spotting

25

2.3.6

Detection Mechanisms

26

2.4

Outlook

26

V

Contents

Nanobiotechnology. Edited by Christof Niemeyer, Chad Mirkin
Copyright

c 2004 WILEY-VCH Verlag GmbH & Co. K aA, Weinheim

ISBN 3-527-30658-7

G

background image

3

Microcontact Printing of Proteins

31

Emmanuel Delamarche

3.1

Introduction

31

3.2

Strategies for Printing Proteins on Surfaces

33

3.2.1

Contact Processing with Hydrogel Stamps

33

3.2.2

Microcontact Printing

33

3.2.3

Affinity-Contact Printing

34

3.3

Microcontact Printing Polypeptides and Proteins

34

3.3.1

Printing One Type of Biomolecule

35

3.3.2

Substrates

36

3.3.3

Resolution and Contrast of the Patterns

38

3.4

Activity of Printed Biomolecules

40

3.5

Printing Multiple Types of Proteins

42

3.5.1

Additive and Subtractive Printing

42

3.5.2

Parallel Inking and Printing of Multiple Proteins

44

3.5.3

Affinity-Contact Printing

44

3.6

Methods

45

3.6.1

Molds and Stamps

45

3.6.2

Surface Chemistry of Stamps

47

3.6.3

Inking Methods

47

3.6.4

Treatments of Substrates

48

3.6.5

Printing

48

3.6.6

Characterization of the Printed Patterns

49

3.7

Outlook

49

4

Cell–Nanostructure Interactions

53

Joachim P. Spatz

4.1

Introduction

53

4.2

Methods

56

4.3

Outlook

63

5

Defined Networks of Neuronal Cells in Vitro

66

Andreas Offenhäusser and Angela K. Vogt

5.1

Introduction

66

5.2

Overview: Background and History

67

5.2.1

Physiology of Information Processing within Neuronal Networks

67

5.2.2

Topographical Patterning

67

5.2.3

Chemical Patterning

68

5.3

Methods

69

5.3.1

Topographical Patterning

69

5.3.2

Photolithographic Patterning

70

5.3.3

Photochemical Patterning

70

5.3.4

Microcontact Printing

71

5.4

Outlook

72

VI

Contents

background image

Part II Protein-based Nanostructures

6

S-Layers

77

Uwe B. Sleytr, Eva-Maria Egelseer, Dietmar Pum, and Bernhard Schuster

6.1

Overview

77

Abbreviations

77

6.1.1

Chemistry and Structure

78

6.1.2

Genetics and Secondary Cell-Wall Polymers

80

6.1.3

Assembly

82

6.1.3.1

Self-Assembly in Suspension

82

6.1.3.2

Recrystallization at Solid Supports

83

6.1.3.3

Recrystallization at the Air/Water Interface
and on Langmuir Lipid Films

83

6.2

Methods

84

6.2.1

Diagnostics

84

6.2.2

Lipid Chips

85

6.2.3

S-Layers as Templates for the Formation of
Regularly Arranged Nanoparticles

87

6.3

Outlook

89

7

Engineered Nanopores

93

Hagan Bayley, Orit Braha, Stephen Cheley, and Li-Qun Gu

7.1

Overview

93

7.1.1

What is a Nanopore?

93

7.1.2

Engineering Nanopores

96

7.1.3

What Can a Nanopore Do?

97

7.1.4

What are the Potential Applications of Nanopores?

100

7.1.5

Keeping Nanopores Happy

103

7.2

Methods

104

7.2.1

Protein Production

104

7.2.2

Protein Engineering

104

7.2.3

Electrical Recording

105

7.2.4

Other Systems

105

7.3

Outlook

106

7.3.1

Rugged Pores

106

7.3.2

Supported Bilayers

106

7.3.3

Membrane Arrays

106

7.3.4

Alternative Protein Pores

107

7.3.5

Pores with New Attributes and Applications

108

7.3.6

Theory

108

8

Genetic Approaches to Programmed Assembly

113

Stanley Brown

8.1

Introduction

113

8.2

Order from Chaos

113

VII

Contents

background image

8.3

Monitoring Enrichment

116

8.4

Quantification of Binding and Criteria for Specificity

119

8.5

Unselected Traits and Control of Crystallization/Reactivity

119

8.6

Dominant Traits, Interpretation of Gain-of-Function Mutants

120

8.7

Interpretation and Requirement for Consensus Sequences

120

8.8

Sizes of Proteins and Peptides

122

8.9

Mix and Match, Fusion Proteins, and Context-Dependence

122

8.10

Mix and Match, Connecting Structures

122

8.11

Outlook

123

9

Microbial Nanoparticle Production

126

Murali Sastry, Absar Ahmad, M. Islam Khan, and Rajiv Kumar

9.1

Overview

126

9.2

Outlook

133

10

Magnetosomes: Nanoscale Magnetic Iron Minerals in Bacteria

136

Richard B. Frankel and Dennis A. Bazylinski

10.1

Introduction

136

10.1.1

Magnetotactic Bacteria

136

10.1.2

Magnetosomes

137

10.1.3

Cellular Magnetic Dipole and Magnetotaxis

138

10.1.4

Magneto-Aerotaxis

139

10.1.5

Magnetite Crystals in Magnetosomes

140

10.1.6

Greigite Crystals in Magnetosomes

141

10.1.7

Biochemistry and Gene Expression in Magnetosome Formation

141

10.1.8

Applications of Magnetosomes

143

10.2

Research Methods

143

10.3

Conclusion and Future Research Directions

143

11

Bacteriorhodopsin and its Potential in Technical Applications

146

Norbert Hampp and Dieter Oesterhelt

11.1

Introduction

146

11.2

Overview: The Molecular Properties of Bacteriorhodopsin

147

11.2.1

Haloarchaea and their Retinal Proteins

147

11.2.2

Structure and Function of Bacteriorhodopsin

150

11.2.3

Genetic Modification of Bacteriorhodopsin

153

11.2.4

Biotechnological Production of Bacteriorhodopsins

154

11.3

Overview: Technical Applications of Bacteriorhodopsin

155

11.3.1

Photoelectric Applications

156

11.3.1.1

Preparation of Oriented PM Layers

156

11.3.1.2

Interfacing the Proton-Motive Force

158

11.3.1.3

Application Examples

158

11.3.2

Photochromic Applications

159

11.3.2.1

Photochromic Properties of Bacteriorhodopsin

159

11.3.2.2

Preparation of Bacteriorhodopsin Films

161

VIII

Contents

background image

11.3.2.3

Interfacing the Photochromic Changes

161

11.3.2.4

Application Examples

161

11.3.3

Applications in Energy Conversion

163

11.4

Methods

165

11.5

Outlook

165

12

Polymer Nanocontainers

168

Alexandra Graff, Samantha M. Benito, Corinne Verbert, and Wolfgang Meier

12.1

Introduction

168

12.2

Overview

168

12.2.1

From Liposomes in Biotechnology to
Polymer Nanocontainers in Therapy

168

12.2.2

Dendrimers

169

12.2.3

Layer by Layer (LbL) Deposition

170

12.2.4

Block Copolymer Self-Assembly

172

12.2.4.1

Shell Cross-linked Knedel’s (SCKs)

173

12.2.4.2

Block Copolymer Nanocontainers

174

12.3

Polymer Nanocontainers with Controlled Permeability

175

12.3.1

Block Copolymer Protein Hybrid Systems

175

12.3.2

Stimuli-responsive Nanocapsules

178

12.4

Nanoparticle Films

179

12.5

Biomaterials and Gene Therapy

180

12.6

Outlook

181

13

Biomolecular Motors Operating in Engineered Environments

185

Stefan Diez, Jonne H. Helenius, and Jonathon Howard

13.1

Overview

185

13.2

Methods

190

13.2.1

General Conditions for Motility Assays

190

13.2.2

Temporal Control

191

13.2.3

Spatial Control

191

13.2.4

Connecting to Cargoes and Surfaces

194

13.3

Outlook

195

14

Nanoparticle–Biomaterial Hybrid Systems
for Bioelectronic Devices and Circuitry

200

Eugenii Katz and Itamar Willner

14.1

Introduction

200

14.2

Biomaterial–Nanoparticle Systems for Bioelectronic
and Biosensing Applications

202

14.2.1

Bioelectronic Systems Based on Nanopaticle–Enzyme Hybrids

202

14.2.2

Bioelectronic Systems for Sensing of
Biorecognition Events Based on Nanoparticles

205

IX

Contents

background image

14.3

Biomaterial-based Nanocircuitry

215

14.3.1

Protein-based Nanocircuitry

216

14.3.2

DNA as Functional Template for Nanocircuitry

218

14.4

Conclusions and Perspectives

221

Part III DNA-based Nanostructures

15

DNA–Protein Nanostructures

227

Christof M. Niemeyer

15.1

Overview

227

15.1.1

Introduction

227

15.1.2

Oligonucleotide–Enzyme Conjugates

228

15.1.3

DNA Conjugates of Binding Proteins

229

15.1.4

Noncovalent DNA–Streptavidin Conjugates

231

15.1.5

Multifunctional Protein Assemblies

234

15.1.6

DNA–Protein Conjugates in Microarray Technologies

236

15.2

Methods

238

15.2.1

Conjugation of Nucleic Acids and Proteins

238

15.2.2

Immuno-PCR

239

15.2.3

Supramolecular Assembly

240

15.2.4

DNA-directed Immobilization

240

15.3

Outlook

241

16

DNA-templated Electronics

244

Erez Braun and Uri Sivan

16.1

Introduction and Background

244

16.2

DNA-templated Electronics

246

16.3

Sequence-specific Molecular Lithography

249

16.4

Summary and Perspectives

253

17

Biomimetic Fabrication of DNA-based Metallic Nanowires and Networks

256

Michael Mertig and Wolfgang Pompe

17.1

Introduction

256

17.2

Template Design

258

17.2.1

DNA as a Biomolecular Template

258

17.2.2

Integration of DNA into Microelectronic Contact Arrays

258

17.2.3

DNA Branching for Network Formation

261

17.3

Metallization

262

17.3.1

Controlled Cluster Growth on DNA Templates

263

17.3.2

First-Principle Molecular Dynamics Calculations
of DNA Metallization

267

17.4

Conductivity Measurements on Metalized DNA Wires

270

17.5

Conclusions and Outlook

272

X

Contents

background image

17.6

Methods

274

17.6.1

Site-Specific DNA Attachment

274

17.6.2

DNA Junctions

274

17.6.3

DNA Metallization

274

18

Mineralization in Nanostructured Biocompartments:
Biomimetic Ferritins For High-Density Data Storage

278

Eric L. Mayes and Stephen Mann

18.1

Overview

278

18.2

Biomimetic Ferritins

279

18.3

High-Density Magnetic Data Storage

280

18.4

Methods

282

18.5

Results

283

18.6

Outlook

285

19

DNA–Gold-Nanoparticle Conjugates

288

C. Shad Thaxton and Chad A. Mirkin

19.1

Overview

288

19.1.1

Introduction

288

19.1.2

Nanoparticles

289

19.1.3

DNA-functionalized Gold Nanoparticles

291

19.1.4

Nanoparticle Based DNA and RNA Detection Assays

292

19.1.4.1

Homogeneous DNA Detection

292

19.1.4.2

Chip-based (Heterogeneous) DNA Detection Assays

293

19.1.5

DNA-Nanoparticle Detection of Proteins: Biobarcodes

299

19.1.6

Conclusion

300

19.2

The Essentials: Methods and Protocols

301

19.2.1

Nanoparticle Synthesis

301

19.2.2

DNA-functionalized Au-NP Probe Synthesis

301

19.2.3

Chip Functionalization with DNA Target “Capture” Strands

303

19.2.4

Typical Assay Design

304

19.3

Outlook

304

19.3.1

Challenges Ahead

304

19.3.2

Academic and Commercial Applications

305

20

DNA Nanostructures for Mechanics and Computing:
Nonlinear Thinking with Life’s Central Molecule

308

Nadrian C. Seeman

20.1

Overview

308

20.2

Introduction

308

20.3

DNA Arrays

311

20.4

DNA Nanomechanical Devices

313

20.5

DNA-based Computation

315

20.6

Summary and Outlook

317

XI

Contents

background image

21

Nanoparticles as Non-Viral Transfection Agents

319

M. N. V. Ravi Kumar, Udo Bakowsky, and Claus-Michael Lehr

21.1

Introduction to Gene Delivery

319

21.2

Nanoparticles for Drug and Gene Targeting

321

21.3

Nonviral Nanomaterials in Development and Testing

321

21.3.1

Chitosan

321

21.3.2

Liposomes and Solid Lipids

327

21.3.3

Poly-l-Lysine and Polyethylenimines

332

21.3.4

Poly(lactide-co-glycolide)

334

21.3.5

Silica

335

21.3.6

Block Copolymers

336

21.4

Setbacks and Strategies to Improve Specific Cell Uptake
of Nonviral Systems

338

21.5

Prospects for Nonviral Nanomaterials

338

Part IV Nanoanalytics

22

Luminescent Quantum Dots for Biological Labeling

343

Xiaohu Gao and Shuming Nie

22.1

Overview

343

22.2

Methods

348

22.3

Outlook

349

23

Nanoparticle Molecular Labels

353

James F. Hainfeld, Richard D. Powell, and Gerhard W. Hacker

23.1

Introduction

353

23.2

Immunogold-Silver Staining: A History

354

23.3

Combined Fluorescent and Gold Probes

356

23.4

Methodology

357

23.4.1

Choice of Gold and AMG Type

357

23.4.2

Iodinization

359

23.4.3

Sensitivity

359

23.5

Applications for the Microscopical Detection of Antigens

359

23.6

Detection of Nucleic Acid Sequences

360

23.7

Applications for Microscopical Detection of Nucleic Acids

361

23.8

Technical Guidelines and Laboratory Protocols

362

23.9

Gold Derivatives of Other Biomolecules

362

23.9.1

Protein Labeling

363

23.9.2

Gold Cluster-labeled Peptides

364

23.9.3

Gold Cluster Conjugates of Other Small Molecules

364

23.9.4

Gold–Lipids: Metallosomes

365

23.10

Larger Covalent Particle Labels

366

23.11

Gold Targeted to His Tags

367

23.12

Enzyme Metallography

368

XII

Contents

background image

23.13

Gold Cluster Nanocrystals

369

23.14

Gold Cluster–Oligonucleotide Conjugates:
Nanotechnology Applications

369

23.14.1

DNA Nanowires

370

23.14.2

3-D Nanostructured Mineralized Biomaterials

370

23.14.3

Gold-quenched Molecular Beacons

372

23.15

Other Metal Cluster Labels

372

23.15.1

Platinum and Palladium

373

23.15.2

Tungstates

374

23.15.3

Iridium

375

24

Surface Biology: Analysis of Biomolecular Structure
by Atomic Force Microscopy and Molecular Pulling

387

Emin Oroudjev, Signe Danielsen and Helen G. Hansma

24.1

Introduction

387

24.2

Recent Results

388

24.2.1

DNA

388

24.2.1.1

DNA Condensation

388

24.2.1.2

DNA Sequences Recognized by Mica

390

24.2.1.3

Drug-binding to Single ds-DNA Molecules

390

24.2.2

Proteins

390

24.2.2.1

Prion Proteins

391

24.2.2.2

Membrane Proteins

393

24.2.2.3

Spider Silk

394

24.2.3

Fossils

394

24.2.4

Science and Nature

394

24.3

Methodology

395

24.3.1

The Probe

396

24.3.2

The Sample

397

24.4

The Future

398

24.4.1

Unity or Diversity?

398

24.4.2

World-wide Research

399

25

Force Spectroscopy

404

Markus Seitz

25.1

Overview

404

25.1.1

Dynamic Force Spectroscopy of Specific Biomolecular Bonds

405

25.1.2

Force Spectroscopy and Force Microscopy of Cell Membranes

409

25.1.3

Protein (Un-)folding

409

25.1.4

Elasticity of Individual Polymer Molecules

412

25.1.5

DNA Mechanics

414

25.1.6

DNA–Protein Interactions

416

25.1.7

Molecular Motors

417

25.1.8

Synthetic Functional Polymers

418

25.2

Methods

419

XIII

Contents

background image

25.2.1

AFM Cantilevers

419

25.2.2

Microneedles

421

25.2.3

Optical Tweezers

421

25.2.4

Magnetic Tweezers

422

25.2.5

Biomembrane Force Probe

423

25.3

Outlook

424

26

Biofunctionalized Nanoparticles for Surface-Enhanced
Raman Scattering and Surface Plasmon Resonance

429

Mahnaz El-Kouedi and Christine D. Keating

26.1

Overview

429

26.1.1

Introduction

429

26.1.2

Applications in SPR

430

26.1.2.1

Nanoparticle Substrates

430

26.1.2.2

Planar Substrates

431

26.1.3

Applications in SERS

434

26.1.3.1

Proteins

434

26.1.3.2

Nucleic Acids

437

26.2

Methods

439

26.2.1

Planar SPR Substrate Preparation

439

26.2.2

Metal Nanoparticles

439

26.2.3

Bioconjugates

439

26.2.4

General Comments

440

26.3

Future Outlook

440

27

Bioconjugated Silica Nanoparticles for Bioanalytical Applications

444

Timothy J. Drake, Xiaojun Julia Zhao, and Weihong Tan

27.1

Overview

444

27.2

Methods

445

27.2.1

Fabrication

445

27.2.2

Particle Probes

447

27.2.2.1

Dye-doped Silica Nanoparticles

447

27.2.2.2

Magnetic Silica Nanoparticles

449

27.2.3

Biofunctionalization of Silica Nanoparticles

449

27.2.3.1

Amino-Group Cross-Linkage

450

27.2.3.2

Avidin–Biotin Linking Bridge

451

27.2.3.3

Disulfide-coupling Chemical Binding

451

27.2.3.4

Cyanogen Bromide Modification

451

27.2.4

Bioanlytical Applications for Silica Nanoparticles

452

27.2.4.1

Cellular Labeling/Detection

452

27.2.4.2

DNA Analysis

453

27.2.4.3

Ultrasensitive DNA Detection

453

27.3

Outlook

454

Index

458

XIV

Contents

background image

Preface

Nanobiotechnology is a young and rapidly evolving field of research at the cross-
roads of biotechnology and nanoscience, two interdisciplinary areas each of which
combines advances in science and engineering. Although often considered one of
the key technologies of the 21

st

century, nanobiotechnology is still in a fairly embryo-

nic state. Topical areas of research are still being defined, and the entire scope of
technological applications cannot be imagined. At present, nanobiotechnology is a
field that concerns the utilization of biological systems optimized through evolution,
such as cells, cellular components, nucleic acids, and proteins, to fabricate func-
tional nanostructured and mesoscopic architectures comprised of organic and inor-
ganic materials. Nanobiotechnology also concerns the refinement and application of
instruments, originally designed to generate and manipulate nanostructured mate-
rials, to basic and applied studies of fundamental biological processes.

This book is intended to provide the first systematic and comprehensive frame-

work of specific research topics in nanobiotechnology. To this end, the current
state-of-the-art has been accumulated in 27 chapters, all of them written by experts
in their fields. Each of the chapters consists of three sections, (i) an overview which
gives a brief but comprehensive survey on the topic, (ii) a methods section which
orients the reader to the most important techniques relevant for the specific topic
discussed, and (iii) an outlook discussing academic and commercial applications as
well as experimental challenges to be solved.

Nanobiotechnology: Concepts, Applications and Perspectives combines contributions

from analytical, bioorganic, and bioinorganic chemistry, physics, molecular and
cell biology, and materials science in an attempt to give the reader a feel for the
full scope of current and potential future developments. The articles in this volume
clearly emphasize the high degree of interdisciplinary research that forms the back-
bone of this joint-venture of biotechnology and nanoscience.

The book is divided into four main sections. The first concerns interphase sys-

tems pertaining to biocompatible inorganic devices for medical implants, micro-
fluidic systems for handling biological components in analytical lab-on-a-chip ap-
plications, and microelectronic silicon substrates for the investigation and manip-
ulation of neuronal cells. Moreover, two chapters describe methodologies regarding
the microcontact printing of proteins and the use of nanostructured substrates to
study basic principles of cell adhesion.

XV

Preface

Nanobiotechnology. Edited by Christof Niemeyer, Chad Mirkin
Copyright

c 2004 WILEY-VCH Verlag GmbH & Co. K aA, Weinheim

ISBN 3-527-30658-7

G

background image

The second section is devoted to protein-based nanostructures. Individual chap-

ters concern the use of specific proteins, such as S-layers to be used as building
blocks and templates for generating functional nanostructures, bacteriorhodopsin
for photochromic applications, protein nanopores as nanoscopic cavities for analy-
tical and synthetic tasks, and biomolecular motors for the translocation of cargo in
synthetic environments. The use of a variety of functional proteins as transducers
and amplifiers of biomolecular recognition events is described in the chapters on
nanobioelectronic devices and polymer nanocontainers. Contributions concerning
the microbial production of inorganic nanoparticles and magnetosomes as well as
the discussion of genetic approaches to generate proteins for the specific organiza-
tion of particles provide insight into the body of classical biotechnology, implemen-
ted in nanobiotechnology.

In the third section, DNA-based nanostructures are described, beginning with

semisynthetic conjugates of DNA and proteins, which link the advantages of nu-
cleic acids to the unlimited functionality of proteins. Three contributions concern
the use of the topographic and electrostatic properties of DNA and proteins for the
templated growth of inorganic materials. Hybrid conjugates of gold nanoparticles
and DNA oligomers are described with a focus on their applications in the high
sensitivity analyses of nucleic acids. Finally, the use of pure DNA molecules for ap-
plications in nanomechanics and computing is discussed.

The fourth section deals with the area of nanoanalytics, which currently includes

the majority of commercial products in nanobiotechnology. In particular, four
chapters describe the use of metal or semiconductor nanoparticles, supplemented
with nucleic acid- and protein-based recognition groups, for biolabeling, histo-
chemical applications and for signal enhancement in optical detection methods.
Nanoparticles are also employed as carriers for genetic material in the non-viral
transfection of cells. To exemplify the use of modern nano-instrumentation for
the study of biological systems, two chapters describe the use of the scanning
probe microscope, the key instrument in nanotechnologies, for investigating bio-
molecular structure, conformation and reactivity.

The purpose of Nanobiotechnology: Concepts, Applications and Perspectives is to pro-

vide both a broad survey of the field and also instruction and inspiration to all le-
vels of scientists, from novices to those intimately engaged in this new and exciting
field of research. Although the collection of articles addresses numerous scientific
and technical challenges ahead, the future of nanobiotechnology is bright and ap-
pears to be limited, at present, only by imagination.

Dortmund, November 2003

Christof M. Niemeyer

Evanston, November 2003

Chad A. Mirkin

XVI

Preface

background image

Contributors

XVII

Contributors

Absar Ahmad
Biochemical Sciences Divison
National Chemical Laboratory
411 008 Pune
India

Udo Bakowsky
Department of Biopharmaceutics and
Pharmaceutical Technology
Saarland University
Im Stadtwald
66123 Saarbrücken
Germany

Holger Bartos
STEAG microParts GmbH
Hauert 7
44227 Dortmund
Germany

Hagan Bayley
Department of Chemistry
University of Oxford
Mansfield Road
Oxford, OX1 3TA
UK

Dennis A. Bazylinski
Department of Physics
California Polytechnic State University
San Luis Obispo, CA 93407
USA

Samantha M. Benito
Department of Chemistry
University of Basel
Klingelbergstrasse 80
4056 Basel
Switzerland

Orit Braha
Department of Chemistry
University of Oxford
Mansfield Road
Oxford, OX1 3TA
UK

Erez Braun
Department of Physics
Solid State Institute
Technion-Israel Institute
of Technology
32000 Haifa
Israel

Stanley Brown
Department of Molecular
Cell Biology
University of Copenhagen
Øster Farimagsgade 2A
1353 Copenhagen K
Denmark

Nanobiotechnology. Edited by Christof Niemeyer, Chad Mirkin
Copyright

c 2004 WILEY-VCH Verlag GmbH & Co. K aA, Weinheim

ISBN 3-527-30658-7

G

background image

XVIII

Contributors

Stephen Cheley
Texas A&M University
Health Science Center
Medical Biochemistry and Genetics
440 Reynolds Medical Building
College Station, TX 77843-1114
USA

Signe Danielsen
Norwegian University
of Science and Technology
Department of Physics
Høgskoleringen 5
7491 Trondheim
Norway

Emmanuel Delamarche
IBM Research
Zürich Research Laboratory
Säumerstrasse 4
8803 Rüschlikon
Switzerland

Stefan Diez
Max Planck Institute of Molecular
Cell Biology and Genetics
Pfotenhauerstrasse 108
01307 Dresden
Germany

Timothy J. Drake
Center for Research at the
Bio-nano Interface
Department of Chemistry,
McKnight Brain Institute,
University of Florida,
Gainesville, FL 32611
USA

Eva-Maria Egelseer
Center for Ultrastructure Research
and Ludwig Boltzmann Institute
for Molecular Nanotechnology
University of Natural Resources
and Applied Life Sciences
Gregor-Mendel-Straße 33
1180 Wien
Austria

Mahnaz El-Kouedi
Department of Chemistry,
The Pennsylvania State University
University Park, PA 16802
USA

Richard B. Frankel
Department of Physics
California Polytechnic State University
San Luis Obispo, CA 93407
USA

Xiaohu Gao
Department of Biomedical Engineering
Emory University School of Medicine
1639 Pierce Drive
Atlanta, GA 30322
USA

Friedrich Götz
Gelsenkirchen University of Applied
Sciences
Neidenburger Str. 43
45877 Gelsenkirchen
Germany

Alexandra Graff
Department of Chemistry
University of Basel
Klingelbergstrasse 80
4056 Basel
Switzerland

background image

XIX

Contributors

Li-Qun Gu
Texas A&M University
Health Science Center
Medical Biochemistry and Genetics
440 Reynolds Medical Building
College Station, TX 77843-1114
USA

Gerhard W. Hacker
Research Institute for Frontier
Questions of Medicine and
Biotechnology
St. Johanns-Hospital
Landeskliniken Salzburg
Muellner Hauptstr. 48
5020 Salzburg
Austria

James F. Hainfeld
Brookhaven National Laboratory
Department of Biology
Upton, NY 11973
USA

Norbert Hampp
Fachbereich Chemie
Philipps-Universität Marburg
Hans-Meerwein-Straße, Geb. H
35032 Marburg
Germany

Helen G. Hansma
Physics Department
University of California
Santa Barbara, CA 93106
USA

John H. Helenius
Max Planck Institute of Molecular
Cell Biology and Genetics
Pfotenhauerstrasse 108
01307 Dresden
Germany

Jonathon Howard
Max Planck Institute of Molecular
Cell Biology and Genetics
Pfotenhauerstrasse 108
01307 Dresden
Germany

Eugenii Katz
Department of Organic Chemistry
Hebrew University
Givat Ram
91904 Jerusalem
Israel

Christine D. Keating
Department of Chemistry,
The Pennsylvania State University
University Park, PA 16802
USA

M. Islam Khan
Biochemical Sciences Divison
National Chemical Laboratory
411 008 Pune
India

Rajiv Kumar
Catalysis Divison
National Chemical Laboratory
411 008 Pune
India

M. N. V. Ravi Kumar
Department of Pharmaceutics
NIPER
SAS Nagar, Sector 67
160 062 Mohali
India

background image

XX

Contributors

Claus-Michael Lehr
Department of Biopharmaceutics
and Pharmaceutical Technology
Saarland University
Im Stadtwald
66123 Saarbrücken
Germany

Stephen Mann
School of Chemistry
University of Bristol
Bristol BS8 1TS
UK

Eric Mayes
NanoMagnetics Ltd.
108 Longmead Road
Bristol BS16 7FG
UK

Wolfgang Meier
Department of Chemistry
University of Basel
Klingelbergstrasse 80
4056 Basel
Switzerland

Michael Mertig
Technische Universität Dresden
Institut für Werkstoffwissenschaft
01062 Dresden
Germany

Chad A. Mirkin
Department of Chemistry &
Institute for Nanotechnology
Northwestern University
2145 Sheridan Road
Evanston, IL 60208-3113
USA

Shuming Nie
Department of Biomedical Engineering
Emory University School of Medicine
1639 Pierce Drive
Atlanta, GA 30322
USA

Christof M. Niemeyer
Universität Dortmund
Fachbereich Chemie
Biologisch-Chemische
Mikrostrukturtechnik
Otto-Hahn-Str. 6
44227 Dortmund
Germany

Dieter Oesterhelt
Max-Planck Institute for Biochemistry
Am Klopferspitz 18A
82152 Planegg-Martinsried
Germany

Andreas Offenhäusser
Institute for Thin Films and Interfaces,
Bio- and Chemosensors
Research Centre Jülich
52425 Jülich
Germany

Emin Oroudjev
Department of Physics
University of California
Santa Barbara, CA 93106
USA

Ralf-Peter Peters
STEAG microParts GmbH
Hauert 7
44227 Dortmund
Germany

background image

XXI

Contributors

Wolfgang Pompe
Technische Universität Dresden
Institut für Werkstoffwissenschaft
01062 Dresden
Germany

Richard D. Powell
Nanoprobes, Incorporated
95 Horseblock Road
Yaphank, NY 11980-9710
USA

Dietmar Pum
Center for Ultrastructure Research
and Ludwig Boltzmann Institute
for Molecular Nanotechnology
University of Natural Resources
and Applied Life Sciences
Gregor-Mendel-Straße 33
1180 Wien
Austria

Murali Sastry
Materials Chemistry Divison
National Chemical Laboratory
411 008 Pune
India

Thomas Sawitowski
Institut für Anorganische Chemie
Universität GH Essen
Universitätsstr. 5-7
45117 Essen
Germany

Bernhard Schuster
Center for Ultrastructure Research
and Ludwig Boltzmann Institute
for Molecular Nanotechnology
University of Natural Resources
and Applied Life Sciences
Gregor-Mendel-Straße 33
1180 Wien
Austria

Nadrian C. Seeman
Department of Chemistry
New York University
New York, NY 10003
USA

Markus Seitz
Department of Applied Physics
Ludwig-Maximilians-Universität
Amalienstrasse 54
80799 München
Germany

Uri Sivan
Department of Physics
Solid State Institute
Technion-Israel Institute of Technology
32000 Haifa
Israel

Uwe B. Sleytr
Center for Ultrastructure Research
and Ludwig Boltzmann Institute
for Molecular Nanotechnology
University of Natural Resources
and Applied Life Sciences
Gregor-Mendel-Straße 33
1180 Wien
Austria

Joachim P. Spatz
Institut für Physikalische Chemie
Universität Heidelberg
INF 253
69120 Heidelberg
Germany

Weihong Tan
Center for Research at the
Bio-nano Interface
Department of Chemistry
McKnight Brain Institute
University of Florida
Gainesville, FL 32611
USA

background image

XXII

Contributors

C. Shad Thaxton
Northwestern University
2145 Sheridan Road
Evanston, IL 60208
USA

Corinne Verbert
Department of Chemistry
University of Basel
Klingelbergstrasse 80
4056 Basel
Switzerland

Angela K. Vogt
Max-Planck Institute
for Polymer Research
Ackermannweg 10
55228 Mainz
Germany

Itamar Willner
Department of Organic Chemistry
Hebrew University
Givat Ram
91904 Jerusalem
Israel

Xiaojun Julia Zhao
Center for Research at the
Bio-nano Interface
Department of Chemistry,
McKnight Brain Institute,
University of Florida,
Gainesville, FL 32611
USA


Wyszukiwarka

Podobne podstrony:
00 Contents
00 Contentsid 1936 Nieznany (2)
00 CONTENTS E
00
Ergonomia 00
13 ZACHOWANIA ZDROWOTNE gr wtorek 17;00
Content Based, Task based, and Participatory Approaches
39 SC DS300 R BMW 5 A 00 XX
00 NPS
III CKN 694 00 id 210233 Nieznany
content39
00 2 Nowa Wiosna
A8 00
egzamin 2007, II rok, II rok CM UMK, Giełdy, 2 rok, II rok, giełdy od Nura, fizjo, egzamin, New fold
tabelka2008, EiE labo, Elektronika i Energoelektronika. Laboratorium, 00.Materiały o wyposażeniu lab
gielda 2010 godz 14.00, Giełdy z farmy
Akumulator do HAKO00 D00 D00 D00 D
Akumulator do BUCHER00$00(0000$00(00

więcej podobnych podstron