background image

   

37

Układy cyfrowe

Układy cyfrowe

Układy cyfrowe

Układy cyfrowe

Układy cyfrowe

E

LEKTRONIKA DLA WSZYSTKICH 3/97

P i e r w s z e   k r o k i

P i e r w s z e   k r o k i

P i e r w s z e   k r o k i

P i e r w s z e   k r o k i

P i e r w s z e   k r o k i

w  cyfrówce

część  3

część  3

część  3

część  3

część  3

Na pewno chciałbyś intuicyjnie zrozu−

mieć  ich  działanie,  a jest  ono  bardzo
proste.

Spróbuj zapamiętać: na wyjściu dwu−

wejściowej  bramki  EX−OR  pojawia  się
stan wysoki, gdy na wejściach występu−
ją  różne  stany  logiczne.  Natomiast  gdy
oba wejścia mają ten sam stan logiczny
(obojętnie czy wysoki, czy niski), na wy−
jściu występuje stan niski.

Bramka  EX−NOR  działa  tylko  trochę

inaczej − gdy stan wejść jest jednakowy,
na wyjściu pojawia się stan wysoki, gdy
stany są różne − stan niski.

Inne bramki

Istnieją też elementy logiczne, realizu−

jące jeszcze inne funkcje. Zapewne spo−
tkałeś  już  określenie  EX−OR  i EX−NOR.
Elementy  takie  również  nazywamy
bramkami.  W literaturze  niekiedy  są
oznaczane  jako  bramki  XOR  lub  XNOR.
Elementów  tych  z pewnością  będziesz
używał w swoich układach.

Jest to rzeczywiście proste. Na rysun−

rysun−

rysun−

rysun−

rysun−

ku 10

ku 10

ku 10

ku 10

ku 10 znajdziesz symbole i opis działania
bramek EX−OR i EX−NOR.

Na  rysunku  11

rysunku  11

rysunku  11

rysunku  11

rysunku  11  zobaczysz,  jak  wyko−

nać  bramkę  EX−OR  z bramek  NAND.
W praktyce  nigdy  się  tak  nie  robi,  bo−
wiem  produkowane  są  układy  scalone
zawierające po cztery bramki EX−OR albo
EX−NOR w jednym układzie scalonym.

Do  czego  wykorzystasz  w praktyce

bramki EX−OR i EX−NOR?

Najczęściej do sprawdzenia, czy dane

sygnały mają takie same poziomy logicz−
ne. Ale nie tylko.

W tym odcinku omówimy bramki

złożone EX−OR i EX−NOR oraz

sprawę logiki ujemnej.

Rys. 10. Bramki EX−OR i EX−NOR.

Rys. 12. Nietypowe wykorzystanie bramek EX−OR i EX−NOR.

Rys. 11. Wykonanie bramki EX−OR z bramek NAND.

background image

38

Układy cyfrowe

Układy cyfrowe

Układy cyfrowe

Układy cyfrowe

Układy cyfrowe

E

LEKTRONIKA DLA WSZYSTKICH 3/97

Logika ujemna

Popatrz teraz na układ pokazany na ry−

ry−

ry−

ry−

ry−

sunku 14

sunku 14

sunku 14

sunku 14

sunku 14. Układ taki może być zastoso−
wany  w małej  centralce  alarmowej.  Do
czterech  wejść  oznaczonych  1...4  dołą−
czone są czujniki. Wejście Z służy do cał−
kowitego  wyłączania  centralki.  Nato−
miast wejścia X, Y umożliwiają włączanie
i wyłączanie  pew−
nych stref (na przy−
kład  garaż  powi−
nien być chroniony
w nocy  także  pod−
czas obecności do−
mowników).  Naru−
szenie 

(zwarcie)

k t ó r e g o k o l w i e k
czujnika 

wywoła

alarm,  o ile  tylko
na  wejściach  ze−
zwalających,  ozna−
czonych  X,  Y,  Z,
będzie 

występo−

wał  stan  wysoki.
W stanie gotowoś−
ci 

(czuwania),

w poszczególnych  punktach  układu  wy−
stąpią stany logiczne, takie jak podano na
rysunku.

Zauważ,  że  jeśli  naruszony  zostan i e

przynajmniej  jeden  czujnik,  zmieni  się
stan  na  wyjściu  którejś  z bramek  ozna−
czonych A, B. Coś tu jakby nie gra: choć
są  to  niewątpliwie  bramki  NAND,
w rzeczywistości  realizują  funkcję  OR
lub  NOR!  Następne  bramki,  oznaczone
C i D rzeczywiście 

realizują 

funkcję

NAND − stan wyjścia zmienia się, gdy na
wszystkich
  wejściach  pojawi  się  stan
wysoki.  Ale  bramka  oznaczona  E znów
pełni  jakby  funkcję  OR  czy  NOR  − poja−

Na  rysunku  12

rysunku  12

rysunku  12

rysunku  12

rysunku  12  zobaczysz  inną  możli−

wość, przydatną w praktyce: w zależnoś−
ci  od  stanu  na  jednym  z wejść,  bramka
EX−OR  (lub  EX−NOR)  neguje  sygnał  we−
jściowy, albo przepuszcza go bez zmian.
Zapamiętaj  właściwość  pokazaną  na  ry−
sunku  12  − przyda  ci  się,  gdy  w trakcie
projektowania  zagospodarujesz  bramki
EX−OR  i  EX−NOR  nie  wykorzystane
w swej klasycznej roli.

Może  zapytasz  jeszcze,  czy  istnieją

wielowejściowe  bramki  EX−OR  i EX−
NOR?  W praktyce  spotkasz  się  tylko
z bramkami  dwuwejściwymi.  Bramki  te
można w prosty sposób łączyć, by uzys−
kać coś podobnego do bramki wielowe−
jściowej,  ale  stosuje  się  to  bardzo  rza−
dko. Istnieją też wielowejściowe układy
zwane  generatorami  i kontrolerami  pa−
rzystości,  przeznaczone  do  systemów
przesyłania  danych  − ich  działanie  nieco
przypomina  działanie  opisywanych  bra−
mek.

Uważaj teraz! W starej krajowej litera−

turze lub w publikacjach obcojęzycznych
spotyka  się  odmienne  symbole  bramek
(oraz  innych  układów  logicznych).  Żeby
nie  robić  ci  wody  z mózgu,  na  poprzed−
nich  rysunkach  podałem  ci  najczęściej
spotykane 

oznaczenia, 

występujące

w większości dostępnych dziś źródeł.

Na rysunku 13

rysunku 13

rysunku 13

rysunku 13

rysunku 13, w pierwszej kolumnie

znajdziesz  oznaczenia  według  dotych−
czas  obowiązujących  norm  krajowych,
w drugiej  kolumnie  nowe  oznaczenia,
zgodne  z zaleceniami  międzynarodowej
organizacji  ISO,  które  są  obecnie  wpro−
wadzane  w wielu  krajach,  także  u nas.
Przyzwyczajaj się powoli do tych nowych
symboli.  W trzeciej  kolumnie  znajdziesz
dawne oznaczenia, spotykane w starszej
literaturze.

wienie  się  stanu  niskiego  na  przynaj−
mniej  jednym
  jej  wejściu  zmienia  stan
wyjścia.  Ostatnia  bramka,  oznaczona  F,
realizuje  funkcję  NAND  − zmienia  stan
wyjścia,  gdy  na  wszystkich  wejściach
wystąpi stan wysoki. Dokładnie to przea−
nalizuj. Coś nam tu przypomina opis dzia−
łania bramki OR i NOR. Jak to rozumieć?

Do tej pory zakładaliśmy, zresztą cał−

kowicie słusznie, że brak napięcia to stan
niski − L, a obecność napięcia (dodatnie−
go) to stan wysoki − H.

Ale  przecież  jest  to  kwestia  umowy:

równie  dobrze  moglibyśmy  ustalić,  że
brak napięcia to stan wysoki, a obecność
napięcia  −  stan  niski.  Tym  sposobem
doszliśmy do tak zwanej logiki ujemnej.

Jeśli  zaglądałeś  do  podręczników

omawiających  technikę  cyfrową,  to  ist−
nieje  duże  prawdopodobieństwo,  że  ja−
kiś niepoprawny teoretyk próbował ci na−
mieszać w głowie, omawiając szczegóło−
wo zarówno logikę dodatnią, jak i ujem−
ną.  Wydaje  się  to  bardzo  skomplikowa−
ne. Ta cała logika ujemna to prawda, ale
praktykującemu elektronikowi może na−
robić w głowie sporo zamieszania i wte−
dy więcej z niej szkody niż pożytku.

Wyjaśniam  więc  raz  na  zawsze:  we

wszystkich praktycznych opisach i publi−
kacjach  z jakimi  się  spotkasz,  a przede
wszystkim w firmowych katalogach cyf−
rowych  układów  scalonych,  stosuje  się
oznaczenia  i pojęcia  związane  z logiką

dodatnią, 

gdzie

stan niski to napię−
cie  bliskie  zera,
a stan  wysoki  to
napięcie bliskie do−
datniego  napięcia
zasilania.  W zasa−
dzie  możesz  więc
nie zawracać sobie
głowy logiką ujem−
ną,  ale  koniecznie
musisz  zrozumieć
pewne  istotne  za−
gadnienie, 

które

dało  o sobie  znać
przy analizie rysun−
ku 14. Oto ono:

Zgodnie  z tym,

co pokazałem na rysunku 14 musisz za−
pamiętać,  że  dowolna  bramka  AND,
NAND,  OR,  NOR  może  pełnić  zarówno
swą “przepisową” funkcję, jak też funk−
cję niejako przeciwną.

Może  jesteś  zaskoczony:  jak  to  jest,

że  ta  sama  bramka  pełni  funkcję  AND
i jednocześnie (tak!) funkcję OR? Teore−
tyk  odpowie:  tu  właśnie  wchodzi  w grę
logika ujemna. Nie przestrasz się tej lo−
giki  ujemnej,  jest  to  bardzo  proste  −
 spróbuj wyczuć zagadnienie intuicyj−
nie.

Zauważ,  że  w układzie  z rysunku  14

“prawdziwą”  funkcję  pełnioną  przez

Rys. 13. Spotykane symbole bramek.

Dowolna bramka może

w praktycznym układzie pełnić

zarówno swą “przepisową”

funkcję, jak też funkcję niejako

przeciwną. W praktyce

używając bramek jednego typu

(ale muszą to być bramki

z negacją) NOR, bądź NAND,

możesz zrealizować wszystkie

funkcje podstawowe: NOT, OR,

NOR, AND, NAND, a także

wszelkie funkcje złożone.

background image

   

39

Układy cyfrowe

Układy cyfrowe

Układy cyfrowe

Układy cyfrowe

Układy cyfrowe

E

LEKTRONIKA DLA WSZYSTKICH 3/97

bramki  wyznaczają  stany  spoczynkowe
na  wejściach  danej  bramki.  Nieprzypad−
kowo  wcześniej  do  znudzenia  wkłada−
łem ci do głowy, że bramka AND i NAND
“zmienia  stan  wyjścia,  gdy  wszystkie
wejścia...”, natomiast bramka OR i NOR
− ”gdy  przynajmniej  jedno  wejście...”.
Przemyśl to i spróbuj zrozumieć. Nie ra−
dzę ci natomiast zapamiętywać jakichkol−
wiek  tabelek,  bo  zaplączesz  się  bezna−
dziejnie.

Teraz już chyba w pełni rozumiesz, że

używając bramek jednego typu (ale mu−
szą to być bramki z negacją, a więc NOR
bądź NAND), możesz zrealizować wszys−
tkie  funkcje  NOT,  OR,  NOR,  AND,
NAND.

Ma  to  bardzo  ważne  konsekwencje

praktyczne.

Niech do ciebie dotrze, że w układzie

z rysunku  14  nie  musieliśmy  stosować
bramek NOR czy OR − odpowiednio wy−
korzystaliśmy  bramki  NAND.  Przeanali−
zuj  rysunek  14  i upewnij  się  jeszcze
raz, że w rzeczywistości bramki A, B i E
pełnią w urządzeniu funkcje odpowiada−
jące bramce NOR.

To,  co  ci  teraz  usiłuję  wbić  do  gło−

wy, jest ogromnie ważne w praktyce −
 jeśli uchwycisz ideę, będziesz potrafił
zbudować  dowolny  układ,  korzystając
wyłącznie  z  bramek  NAND  lub  NOR.
Oczywiście  musisz  pomału  nabrać
wprawy.

Nie znaczy to jednak, że masz wyko−

nywać  układy  zawierające  tylko  bramki
NAND albo NOR. Bez przesady! Zacho−
waj rozsądek. Przejrzyj dokładnie wcześ−
niejsze  numery  Elektroniki  dla  Wszyst−
kich  czy  Elektroniki  Praktycznej  i zwróć
uwagę, jakie bramki i w jaki sposób wy−
korzystuje  się  w przezentowanych  tam
układach.

Jeśli zajmujesz się techniką

cyfrową, powinieneś o każdej

porze dnia i nocy pamiętać, jak

działają bramki NOT, OR, NOR,

AND, NAND, EX−OR i EX−NOR.

Musisz dokładne rozumieć

działanie bramki jako

sterowanego zaworu.

Powinieneś rozumieć dlaczego
każda bramka NAND czy AND

umożliwia zrealizowanie

funkcji NOR i OR, i jakie to ma

znaczenie praktyczne.

Nie bój się logiki ujemnej − to

nic trudnego; pamiętaj, że

o rzeczywistej funkcji bramki

decydują stany na jej wejściach

podczas “spoczynku”.

Nie ucz się żadnych tabelek −
 staraj się zrozumieć zasady.

W razie potrzeby przygotuj

sobie ściągawkę zawierającą

podstawowe informacje.

W każdym  razie  zrozumienie,  a właś−

ciwie  wyczucie  i przyswojenie  omówio−
nych  właśnie  zasad,  jest  bardzo  cenne
przy  projektowaniu  urządzeń  cyfrowych
zawierających bramki. Szybko się o tym
przekonasz, jeśli będziesz sam projekto−
wał  układy.  Może  pomyślisz,  że  nama−
wiam  cię  do  cze−
goś  wręcz  prze−
ciwnego,  niż  zale−
cają  szkolne  pod−
ręczniki.  W wielu
szkolnych  ćwicze−
niach  masz  za  za−
danie  zrealizować
daną  wzorem  fun−
kcję  logiczną  przy
użyciu  dowolnych
bramek. W prakty−
ce  najczęściej  by−
wa  zupełnie  ina−
czej.  Przy  prost−
szych 

układach

nikt nie zastanawia
się  nad  wzorami,
tylko  od  razu  pró−
buje 

narysować

schemat 

układu

i na  bieżąco  zasta−
nawia 

się, 

czy

układ spełni posta−
wione zadanie i ja−
kich 

dostępnych

kostek 

trzeba

użyć.

Jeśli  masz  cier−

pliwość, weź teraz
kartkę  i narysuj  ja−
kiś  niezbyt  skom−
plikowany układ lo−
giczny  zawierający  bramki  NOT,  OR,
NOR, AND i NAND. Potem spróbuj zreali−
zować układ pełniący takie same funkcje

przy  użyciu  jednego  typu  bramek:  NOR
albo NAND.

Zakoduj  sobie  w głowie  raz  na  za−

wsze,  że  każdą  funkcję  logiczną  można
zrealizować z pomocą bramek NAND czy
też  NOR.  Używając  odpowiednio  dużej
ilości takich bramek, teoretycznie mógł−

byś  wykonać  do−
wolny  przerzutnik,
licznik, 

dekoder,

a nawet  mikropro−
cesor. 

Nie 

bę−

dziesz  tego  robił,
bo wcześniej zrobi−
li  to  za  ciebie  inni
i masz do dyspozy−
cji wiele cyfrowych
układów scalonych
pełniących  najróż−
niejsze 

funkcje.

Układy te zacznę ci
p r z e d s t a w i a ć
w jednym  z  na−
stępnych 

odcin−

ków.  Wykaż  cierp−
liwość: zanim prze−
jdziemy  do  prze−
rzutników 

liczni−

ków,  rejestrów  i
dekoderów,  wcze−
śniej  musisz  przy−
swoić  sobie  sporo
rzetelnej  wiedzy.
Dlatego  w następ−
nym  odcinku  za−
jmiemy  się  budo−
wą 

wewnętrzną

w s p ó ł c z e s n y c h
bramek  i  innych
układów 

cyfro−

wych  oraz  praktycznymi  konsekwencja−
mi różnic w ich budowie.

Piotr Górecki

Piotr Górecki

Piotr Górecki

Piotr Górecki

Piotr Górecki

Rys. 14. Przykładowy układ logiczny.