background image

PROGRAMOWANIE LINIOWE – ZADANIA TEKSTOWE

6. Przedsiębiorstwo produkuje dwa wyroby: W1 i W2. W procesie produkcji tych wyrobów zużywa się wiele 

środków z których dwa są limitowane. Limity te wynoszą: środek I – 36000 jedn., środek II – 50000 jedn. 
Nakłady limitowanych środków na jednostkę wyrobów podano poniżej. 

Środki produkcji

Jedn. nakłady środka W1

Jedn. nakłady środka W2

I

6

6

II

10

5

Zdolność produkcyjna nie pozwala produkować więcej niż 4000 szt. wyrobów W2 natomiast nie ma 
ograniczeń w stosunku do wyrobów W1. Cena sprzedaży obu wyrobów jest taka sama.
Zaznacz w układzie współrzędnych obszar rozwiązań dopuszczalnych, gradient funkcji celu, warstwice 
funkcji celu. Ustał rozmiar produkcji maksymalizujący zysk ze sprzedaży wyrobów W1 i W2. 

7. Przedsiębiorstwo produkuje dwa wyroby: W1 i W2. W procesie produkcji tych wyrobów zużywa się wiele 

środków z których dwa są limitowane. Limity te wynoszą: środek I – 96000 jedn., środek II – 80000 jedn. 
Nakłady limitowanych środków na jednostkę wyrobów podano poniżej. 

Środki produkcji

Jedn. nakłady środka W1

Jedn. nakłady środka W2

I

16

24

II

16

10

Zdolność produkcyjna nie pozwala produkować więcej niż 3000 szt. produktu W1 oraz 4000 szt. wyrobów 
W2. Stosunek produkcji wyrobów W1 do W2 musi wynosić 3:2. Cena sprzedaży (w zł) wyrobów wynosi 
W1 – 30, W2 – 40.
Zaznacz w układzie współrzędnych obszar rozwiązań dopuszczalnych, gradient funkcji celu, warstwice 
funkcji celu. Ustał rozmiar produkcji maksymalizujący zysk ze sprzedaży wyrobów W1 i W2. 

8. Przedsiębiorstwo produkuje dwa wyroby: W1 i W2. W procesie produkcji tych wyrobów używa się trzech 

obrabiarek oznaczonych symbolami O, P, i F. Czas pracy (w godz.) tych maszyn jest ograniczony i wynosi: 
O – 33000, P – 13000, F – 80000. Zużycie czasu pracy maszyn na produkcje jednostki wyrobów podano 
poniżej. 

Maszyny

Czas pracy na jedn. W1

Czas pracy na jedn. W2

O

3

1

P

1

1

F

8

Zysk ze sprzedaży (w zł) wyrobów wynosi W1 – 1, W2 – 3. Wyrobu W2 nie daje się sprzedać więcej niż 
7000 szt.
Zaznacz w układzie współrzędnych obszar rozwiązań dopuszczalnych, gradient funkcji celu, warstwice 
funkcji celu. Ustał rozmiar produkcji maksymalizujący zysk ze sprzedaży wyrobów W1 i W2. 
Czy optymalna struktura produkcji ulegnie zmianie jeśli zysk ze sprzedaży wyrobu I wzrośnie do 4 zł?

9.

Dobierz skład mieszanki paszowej składającej się z dwóch produktów P1 i P2.  Mieszanka musi dostarczyć 
składników odżywczych S1, S2 i S3 w ilości nie mniejszej niż określone w tabeli minimum. Cena produktu 
P1 wynosi 6 zł, P2 – 9 zł. Zminimalizuj koszt zakupu produktów P1 i P2 potrzebnych do wytworzenia 
mieszanki paszowej

Składniki

Zawartość 
składnika w1kg 
mieszanki P1

Zawartość 
składnika w1kg 
mieszanki P2

Łączna minimalna 
ilość składnika w 
mieszance

S1

3

9

27

S2

8

4

32

S3

12

3

36

10. Dwa gatunki węgla A i B zawierają zanieczyszczenia fosforem i popiołem. Niezbędne jest dobranie co 

najmniej 90 ton opału zawierającego nie więcej niż 0,03% fosforu i nie więcej niż 4% popiołu. Procent 

background image

zanieczyszczeń i ceny zakupu podano w tabeli. Jak zmieszać oba gatunki węgla, aby uzyskać najtańsze 
paliwo spełniające stawiane wymagania?

Węgiel

% zawartość 
zanieczyszczeń 
fosforu

% zawartość 
zanieczyszczeń 
popiołu

Cena zakupu 1 t 
węgla

A

0,02

3

200

B

0,05

5

160

Czy skład paliwa należy zmienić jeśli cena węgla B wzrośnie do 200 zł za tonę?

11. Do produkcji dwóch wyrobów P1 i P2 zakład może kupić za tę samą cenę jedną z dwóch technologii: A lub 

B. Zużycie w kg. trzech limitowanych surowców S1, S2, S3 na jedną sztukę wyrobu podano w tabeli. 
Limity wykorzystania surowców w tonach są następujące: S1 – 12, S2 – 9, S3 – 6. Cena sprzedaży wyrobu 
P1  wynosi 100 zł, a produktu P2 300 zł. Którą technologię należy wybrać, aby zmaksymalizować przychód 
z łącznej sprzedaży wyrobów P1 i P2?

Zużycie surowca na 1 szt. wyrobu w kg.

Technologia A

Technologia B

S1

S2

S3

S1

S2

S3

P1

2

1

0

3

0

1

P2

1

0

1

2

3

1

12. Przedsiębiorstwo „Kop z nami” wykonuje wykop pod budynek. Na stanie przedsiębiorstwa są samochody 8 

i 10 tonowe. Koparka wykonująca wykop może załadować maksymalnie 25 jednostek w ciągu zmiany bez 
względu na pojemność samochodu. Na jeden kurs samochód 8 tonowy zużywa 6 litrów paliwa, 10 tonowy – 
8 litrów. Żaden z samochodów nie jest w stanie wykonać więcej niż 20 kursów w ciągu zmiany. Dzienny 
limit paliwa wynosi 196 litrów. Ile cykli przewozowych należy zaplanować dla każdego z dwóch typów 
samochodów, aby objętość wywiezionego gruntu była największa? Czy zlikwidowanie limitu zużywanego 
paliwa zmieni rozwiązanie?

13.

Zakład dysponuje jednym urządzeniem do produkcji mieszanek betonowych A i B. Mieszanki rozwożone są 
tym samym typem wywrotki. Urządzenie produkujące mieszanki w ciągu jednej godziny jest wstanie 
wyprodukować 14 wywrotek mieszanki A lub 7 wywrotek mieszanki B. Ze względu na różne odległości do 
odbiorców samochody są w stanie  przewieść mieszankę A siedem razy na godzinę lub 12 razy na godzinę 
mieszankę B. Urządzenie do załadunku jest w stanie obsłużyć nie więcej niż 8 samochodów na godzinę bez 
względu na rodzaj mieszanki. Zysk ze sprzedaży mieszanki A wynosi 50 zł za wywrotkę a 100 zł za 
mieszankę B. Ile wywrotek mieszanki A i B powinien produkować zakład, aby zmaksymalizować dochód 
ze sprzedaży betonów? Do ilu należałoby zwiększyć moc urządzenia załadunkowego, aby nie stanowiło 
ograniczenia wzrostu sprzedaży produkowanych mieszanek betonowych?

14. Przedsiębiorstwo budowlane produkuje dwa elementy: A i B ze sprzedaży których uzyskuje zysk 

odpowiednio 300 i 450 zł. Do produkcji zużywa się dwa materiały (stal i blachę), których miesięczne 
dostawy są w ograniczonej ilości. W procesie produkcji używa się trzech maszyn o limitowanej miesięcznej 
przepustowości wyrażonej w maszynogodzinach. Dane o wielkości zapasów, przepustowości maszyn i 
norm użycia materiałów i maszyn przy produkcji jednego elementu podane są w tabeli.

Rodzaj zasobu

Wielkość zapasów Norma zużycia na 

jedn. wyr. A

Norma zużycia na 
jedn. wyr. B

Stal [kg]

2800

35

40

Blacha [m

2

]

1200

12

25

Wózek widłowy 

[mg]

1800

30

40

Giętarka [mg]

2000

25

40

Nożyce [mg]

2400

20

60

Zysk [zł]

300

450

Wyznacz plan produkcji maksymalizujący zysk ze sprzedaży elementów A i B.
Czy zwiększenie miesięcznych dostaw stali i blachy przyczyni się do osiągnięcia większego zysku?
Co stanowi „wąskie gardło” produkcji?
Jeśli zysk ze sprzedaży elementu B spadnie do 350 zł czy należy zmienić plan produkcji?

background image

15.

Stolarnia otrzymała zamówienie na 1000 stojaków. Do zbudowania każdego stojaka wymagane jest użycie 
jednej belki 3m oraz trzech belek 2,5m. Na składzie są dłużyce o długości 5,7m. Jak i ile najmniej trzeba 
pociąć dłużyc, aby zrealizować zamówienie i łączna suma odpadów (odcinków krótszych od 1m) była 
najmniejsza? Czy sposób cięcia należy zmienić, jeśli za odpad uznamy odcinki krótsze od 0,5m?

16. Zakład wytwarza dwa rodzaje przecierów: SMAK i ŁASUCH. Produkty są pakowane w identyczne 

opakowania, których łącznie dziennie można zużyć maksymalnie 8000 szt. Sprzedaż każdego opakowania 
przecieru SMAK przynosi 0.40 zł zysku a ŁASUCHA ze względu na promocję stratę 10 gr na opakowaniu. 
Aby ŁASUCH zaistniał na rynku musi być produkowany co najmniej w ilości 1000 opakowań dziennie. 
Jednak ze względów ekonomicznych ustalono, że jego produkcja nie może przekroczyć 250% przecieru 
SMAK i dodatkowo 1000 opakowań. Ze względów technologicznych produkcja przecieru SMAK może być 
co najwyżej trzy razy taka jak przecieru ŁASUCH. Ustal wielkość dziennej produkcji obu przecierów 
maksymalizujący zysk ze sprzedaży.

17. Uprawa określonego gatunku zboża daje maksymalne plony, gdy gleba zostanie nawieziona trzema 

mikroelementami: A, B i C. Substancje te wchodzą w skład nawozów mineralnych azotowego i 
fosforowego, których maksymalna łączna dawka na 1 ha nie może przekroczyć 30 kg. Tablica podaje 
zawartość mikroelementów w 1kg każdego z nawozów i minimalną wymaganą dawkę poszczególnych 
mikroelementów na 1 ha uprawy. 

Mikroelementy

Zawartość mikroelementów w g 
w1kg nawozu
azotowy

fosforowy

Minimalna dawka 
mikroelementu w g 
na 1ha

A

24

12

240

B

7

21

210

C

15

9

162

Cena

3.5 zł

3 zł

Wiadomo, że zawartość mikroelementu A w dawce nawozowej nie może przekroczyć sumy zawartości 
mikroelementów B i C w tej dawce. 
- Określ strukturę i wielkość nawożenia, aby koszt zakupu był minimalny.
- Sprawdź, czy zastosowanie 20 kg nawozy azotowego i 8 kg fosforowego jest decyzją dopuszczalną
- Mając do wyboru dwie decyzje o zakupie odpowiednio nawozów azotowego i fosforowego  w ilościach 
(12,7) i (11, 6) należy wybrać. 

18. Zakład produkuje środki ochrony roślin A, B, C. Do produkcji tych preparatów używane są między innymi 

trzy rodzaje koncentratów : K1, K2 I K3 wg norm podanych w tablicy. Wiadomo, że zakład może 
maksymalnie wykorzystać 60 kg koncentratu K1 oraz 80 kg K3.

Produkt

Zawartość koncentratu w g w 1 litrze 
produktu 
K1

K2

K3

Cena 1 litra w zł

A

40

40

60

2.4

B

50

80

-

2

C

-

40

100

3.5

- Wyznacz minimalną ilość koncentratu K2 niezbędną do tego, aby decyzja o wyprodukowaniu 500 l 
preparatu A, 700 l preparatu B i 350 l preparatu C była decyzja dopuszczalną.
- Wyznacz plan produkcyjny maksymalizujący sprzedaż wiedząc, że zapas koncentratu K2 wynosi 100 kg z 
czego 30% musi być bezwzględnie zużyte ze względu na datę ważności

19. Piekarnia może przygotować dziennie 200 kg ciasta do wypieku bułek (10 dkg), bagietek (25 dkg) i 

chlebów (65 dkg). Produkty sprzedawane są w cenie: bułki 50 gr, bagietki 1.20 zł, chleb 3.30 zł. Koszt 
energii elektrycznej do wypieku wynosi na 1 szt: bułki 3 gr, bagietki 6 gr, chleb 20 gr. Koszt pozostałych 
surowców i robocizny wynosi 2.80 zł na 1 kg ciasta. Pojedynczy wsad do pieca musi zawierać: 70 bułek lub 
30 bagietek lub 10 chlebów. Wypiek trwa 20 minut bez względu na rodzaj pieczywa. Jest jeden piec i może 
on pracować maksymalnie 10 godzin dziennie. 
– ustal plan wypieku maksymalizujący zysk zakładając, że koszt zużycia energii dziennie nie może 
przekroczyć 62 zł.
- ustal plan wypieku, aby przy dziennym zysku 386 zł zminimalizować koszty zużycia energii

background image

- ustal plan wypieku, aby przy dziennej sprzedaży przynajmniej 900 zł zminimalizować zużycie ciasta 

background image

20.

Zakład produkujący ramy okienne otrzymał zamówienie na wykonanie okien. Należy przygotować 
przynajmniej 60 drzwi balkonowych o wymiarach 2.30 x 1.20 m oraz co najmniej 45 okien o wymiarach 
1.20 x 1.20 m. Odpowiednie kawałki ram wycina się z belek o długości 5 m. Ile najmniej belek należy 
pociąć i w jaki sposób, aby zrealizować zamówienie? Za odpad uważamy odcinek krótszy niż 0.5 m.

21.

Zakład wytwarza elementy przewodów wodociągowych: kolanka, przeguby i złącza. W tym celu tnie 
standardowo plastikowe rury o długości 50 cm na kawałki odpowiednio: 22 cm kolanka, 16 cm przeguby i 
12 cm złącza. Kolanka są sprzedawane wyłącznie w kompletach z dwoma złączami w cenie 20 zł za 
komplet, same złącza trafiają do sprzedaży w cenie 5 zł a przeguby 7 zł za sztukę. Wiadomo również, że 
należy produkować przynajmniej dwa razy więcej przegubów niż kolanek. Staramy się pociąć możliwie 
najmniejszą liczbę rur.
– Ustal plan produkcji minimalizujący odpad powstały po rozkroju rur (tzn. odcinki krótsze niż najkrótszy 
produkowany element), tak aby uzyskać ze sprzedaży przynajmniej 2400 zł.
– Ustal optymalny plan produkcji, który maksymalizuje jej wartość sprzedaną, jeśli wiadomo, że zakład ma 
do dyspozycji 400 rur do pocięcia.

22.

Zakład wytwarza jednorodny produkt w trzech oddziałach terenowych A, B i C. Ilość wytwarzanego towary 
wynosi odpowiednio: w A 6000 szt, w B 1000 szt i w C 10000 szt. Wytwarzany produkt rozprowadzany jest 
do czterech sklepów w miejscowościach P, Q, R, S. Zapotrzebowanie zgłoszone przez te sklepy jest 
następujące: P – 7000 szt, Q – 5000 szt, R – 3000 szt, S – 2000 szt. Koszt przewozu w przeliczeniu na jedną 
sztukę towaru w zł wynosi:

Od                       Do

P

Q

R

S

A

0.2

0.3

1.1

0.7

B

0.1

0

0.6

0.1

C

0.5

0.8

1.5

0.9

Wyznacz ilości produktów, które należy przewieść z każdego oddziału do każdego sklepu tak, aby 
zminimalizować koszty transportu.

23.

Gmina organizuje transport i pokrywa koszty utylizacji odpadów z czterech miejscowości: A, B, C i D. Z 
każdej miejscowości dziennie należy wywieść odpowiednio 45 ton, 80 ton, 65 ton i 110 ton odpadów. 
Istnieją trzy zakłady utylizacji: Z1, Z2, Z3. Odległości pomiędzy miejscowościami a zakładami utylizacji 
śmieci podano w tabeli. Koszt przewozu 1 tony śmieci jest zryczałtowany i wynosi 13 zł/km. Koszt 
utylizacji 1 tony odpadów jest zróżnicowany i wynosi odpowiednio dla zakładów: Z1- 10zł, Z2 – 15 zł, Z3 – 
12 zł. Dwa zakłady posiadają ograniczoną dzienną moc przerobową, która wynosi odpowiednio w tonach: 
Z1 – 75, Z2 – 145. Ilość przerabianych odpadów w zakładzie Z3 nie jest ograniczona. Jak należy rozwozić 
odpady, aby koszt transportu i utylizacji łącznie był najmniejszy. 

Od                       Do

Z1

Z2

Z3

A

8

8

18

B

20

5

6

C

18

10

15

D

12

15

25

24.

Siedem miast L, M, N, O, P, R i S połączonych jest siecią dróg (odległości pomiędzy miastami podano w 
tabeli). Pomiędzy tymi miastami istnieje wymiana towarów przewożonych 50 tonowymi  samochodami. Do 
każdego z tych miast dowozi się pewne towary oraz z każdego z nich wywozi się inne. Dzienne przywozy p

oraz wywozy w

i

 do i z poszczególnych miast (w tonach) oraz odległości pomiędzy tymi miastami podano w 

tabeli. Zminimalizuj puste przebiegi samochodów przewożących towar pomiędzy tymi miastami.

odległości

L

M

N

O

P

R

S

Wywóz w

i

L

0

20

50

100

150

200

100

1000

M

0

40

20

30

50

20

2000

N

0

100

150

200

100

1000

O

0

40

30

150

100

P

0

80

70

200

R

0

60

1000

S

0

500

Przywóz p

i

500

1000

2000

1000

1000

300

0

5800

background image
background image

25. Rozwiąż graficznie stosując zadanie dualne:

16y

1

 – 18y

2

 – 8y

3

 + 4y

4

 –> min

gdy
y

1

 – 3y

2

 + y

3

 –2y

4

 ≥ 20

2y

1

 – 2y

2

 – 4y

3

 + y

4

 ≥10

y

1

..y

4

 ≥ 0

26. Istnieje możliwość produkcji trzech wyrobów: W1, W2 I W3. Ewentualny zysk z produkcji tych wyrobów 

wynosi za sztukę odpowiednio: W1 – 10 zł, W2 – 24 zł, W3 – 12 zł. Dwa surowce  S1 i S2 używane do 
produkcji tych wyrobów są w ograniczonej ilości: S1 – 3600 kg, S2 – 4800 kg. Normy użycia tych 
surowców podane są w tabeli. Które z tych wyrobów oraz w jakiej ilości powinny być produkowane. 
Zadanie rozwiąż metodą graficzną, konstruując zadanie dualne. 

Surowce

Zużycie surowców (w kg/ szt wyrobu)

W1

W2

W3

S1

5

3

0

S2

1

2

4

27. Przedsiębiorstwo może produkować cztery wyroby: A, B, C i D. Ograniczeniem produkcji są dwa surowce 

S1 i S2. Dane o zużyciu i zapasach surowców podano w tabeli. Ceny wyrobów wynoszą odpowiednio A- 10 
zł, B – 14 zł, C – 8 zł, D – 11 zł. Które z tych wyrobów oraz w jakiej ilości powinny być produkowane. 
Zadanie rozwiąż metodą graficzną, konstruując zadanie dualne. 

Surowce

zapas

Zużycie surowców (w kg/ szt wyrobu)

A

B

C

D

S1  2000

0.5

0.4

0.4

0.2

S2  2800

0.4

0.2

0

0.5

28. Inwestor posiada 20000 zł i chce nabyć akcje trzech spółek A, B i C. Może je kupić odpowiednio za: A – 10 

zł, B – 15 zł, C – 5 zł. Zakupiony portfel nie może przekroczyć 18000 jednostek akcji łącznie. Spodziewany 
zysk inwestora wynosi w stosunku rocznym 8% dla spółki A, 10% dla B i 7% dla C. Ustal metodą graficzną 
zakup maksymalizujący zysk roczny.

29. Firma wytwórcza posiada w chłodni zapas dwóch mrożonek: S1 i S2 w ilościach odpowiednio 1.2 t oraz 

0.8 t. Mrożonki te są podstawą produkcji dwóch koncentratów A i B. Do wyprodukowania 1 litra 
koncentratu A zużywa się 3 kg mrożonki S1 i 1 kg mrożonki S2. Do wyprodukowania 1 litra koncentratu B 
zużywa się po 2 kg mrożonki S1 i S2.  Jak należy zaplanować wielkość produkcji koncentratów, aby firma 
mogła osiągnąć maksymalny przychód z ich sprzedaży wiedząc, że cena koncentratu B jest o 50% większa 
od koncentratu A? Jakimi zapasami mrożonek będzie dysponowała firma po zrealizowaniu optymalnej 
strategii? Rozwiąż metodą graficzną.

30.

Zakład produkuje ramy okienne o wymiarach 1.6 x 1.6 m oraz balkonowe o wymiarach 2.1 X 1.6 m. Należy 
wyprodukować co najmniej 150 okien zwykłych oraz 100 okien balkonowych. Belki z których będą 
produkowane okna mają długość 5.0 m. Ile najmniej należy pociąć belek i w jaki sposób, aby odcinków 
krótszych od 1.6 m było jak najmniej? Czy rozwiązanie zmieni się, gdy za odpad przyjmiemy odcinek 
krótszy od 1.0 m?

31. Zakład produkuje na dwóch urządzeniach U1 i U2 kubki i miski. Ustal zakres produkcji minimalizujący 

koszty produkcji wiedząc, że maksymalny czas pracy urządzenia U1 Nie może przekroczyć 16 godzin 
dziennie a liczba wyprodukowanych misek musi być co najmniej 1000 szt. Czas produkcji i koszty 
jednostkowe podano w tabeli.

Czas prod. w min.

Jednostkowy koszt prod. w zł.

Wyrób
Maszyna

Kubek

Miska

Kubek

Miska

U1

15

12

2

2.5

U2

24

20

2

2.60

background image

32. Przedsiębiorca zamierza zorganizować cztery warsztaty naprawcze samochodów. Rozważa obsługę pięciu 

marek a przy tym chce, aby każdy warsztat obsługiwał tylko jedną markę. Wskaż, które marki samochodów 
powinny być obsługiwane w każdym z warsztatów aby łączny czas obsługi był najmniejszy. Czasy napraw 
poszczególnych marek w poszczególnych warsztatach podano w tabeli.

Warsztat

FORD

VW

TOYOTA

FIAT

OPEL

1

5

7

8

7

6

2

6

4

7

6

4

3

7

5

6

5

5

4

4

3

5

9

8

33. Pewna firma zatrudnia trzy maszynistki do korespondencji w trzech językach: angielskim, niemieckim i 
włoskim. W tablicy podano liczbę uderzeń na minutę każdej maszynistki w każdym jeżyku. Wyjątek stanowi 
maszynistka nr 2 która nie zna języka niemieckiego. Przydziel poszczególne maszynistki do poszczególnych 
języków.

Maszynistki

Języki

Ang.

Niem.

Włoski

1

80

105

79

2

109

X

90

3

100

97

85

34.

Zakład produkuje piłki ręczne, nożne i lekarskie. Normy zużycia trzech materiałów oraz czasu na 
poszczególne wyroby podano w tabeli. Ustalić miesięczny plan produkcji ( 4 tygodnie po 42 godz.) tego 
zakładu, minimalizując zużycie skóry, jeśli wiadomo, że wartość produkcji nie powinna być mniejsza od 50 
000 zł a miesięczny zapas gumy wynosi 400 m

2

 a nici 13 tys mb.

-

zapisz model PL tego problemu decyzyjnego,

-

podaj postać standardową tego modelu oraz interpretację wprowadzonych zmiennych dodatkowych

Cena w zł

Normy zużycia

Czas wyk w min

Piłka nożna

100

0.4

0.3

19

20

Piłka ręczna

75

0.3

0.2

18

15

Piłka lekarska

150

0.5

0.7

20

30

35. Alpinista posiada plecak o maksymalnej wadze ładunku 25 kg. Wykaz przedmiotów do zapakowania 

obejmuje: 8 przedmiotów typu A po 2 kg, 10 przedmiotów typu B po 2.5 kg, 18 przedmiotów typu C po 2 
kg oraz 30 przedmiotów typu D po 0.5 kg. Przedmioty A posiadają rangę ze wsp. 1, przedmioty B rangę 0.7, 
C rangę 0.5 i D rangę 0.1.

- Określ sposób zapakowania plecaka, aby wartość mierzona rangą zapakowanych przedmiotów była jak 
najwyższa zakładając, że alpinista wykona tylko jeden kurs,
- Określ sposób zapakowania plecaka, aby wartość mierzona rangą zapakowanych przedmiotów była jak 
najwyższa zakładając, że alpinista po wykonaniu kursu pierwszego wykona drugi, pakując plecak przedmiotami 
które pozostały po pierwszym kursie,
- Określ sposób zapakowania plecaka, aby wartość mierzona rangą zapakowanych przedmiotów była jak 
najwyższa zakładając, że alpinista wykona dwa kursy.

background image

36. Do obsługi całodobowego sklepu potrzebny jest personel w liczbie dostosowanej do pory doby:

Godz.

0-4

4-8

8-12

12-16

16-20

20-24

Liczba prac.

5

7

15

10

15

9

Stawka za godzinę pracy wynosi 10 zł za pracę do 8 godzin i 15 zł za pracę powyżej ośmiu godz. 
-

Załóż, że czas pracy każdego pracownika w ciągu doby wynosi 8 godz. Ustal minimalną liczbę 
pracowników potrzebnych do obsługi sklepu.

-

Jak się zmieni rozwiązanie, jeśli założymy, że czas pracy wszystkich pracowników wynosi 12 godz. Na 
dobę?,

-

Czy rozwiązanie się zmieni, gdy w poprzednich przypadkach za kryterium przyjmiemy minimalna łączną 
płacę całego personelu?,

-

Jak zmieni się rozwiązanie, gdy założymy, że pracownikom rozpoczynającym pracę o godz. 0 i 4 płacimy 
dodatek za dojazd do pracy w wysokości 30 zł. (przyjmując za kryterium minimalna łączną płacę całego 
personelu), a czas pracy na dobę wynosi 8 godzin?

-

Ustal wymagane zatrudnienie, zakładając, że pracownicy mogą pracować 8 lub 12 godz. przyjmując za 
kryterium minimalna łączną płacę całego personelu (uwzględnij dopłaty za dojazdy jak wyżej),

-

Porównaj łączną płacę całego personelu we wszystkich rozważanych przypadkach.

37. Rafineria produkuje dwa gatunki benzyny: zwykłą (Z) i bezołowiową (W). Miesza w tym celu trzy składniki: 
S1, S2 S3. Cena 1 tony benzyny Z wynosi 3.35 a W 3.20. Ceny poszczególnych składników, ich zapasy oraz 
wymogi technologiczne co do składu podano w tabeli. Wymagana jest produkcja co najmniej 10000 ton benzyny 
Z i 8000 ton benzyny W a stosunek wyprodukowanej benzyny Z do W powinien wynosić jak 9 do 10.  Zbuduj 
model matematyczny pozwalający określić plan produkcji benzyn maksymalizujący zysk.

Składnik

Cena

Zasób

Ben. Z

Benz. W

S1

1.25

5000

Co najwyżej 30%

Co najmniej 25%

S2

1.80

10000

Co najmniej 40%

Co najwyżej 40%

S3

2.52

10000

Co najwyżej 20%

Co najmniej 30%

38. Firma dysponuje pięcioma liniami produkcyjnymi, na których może wytwarzać cztery rodzaje proszków: A, 
B, C, D. Czas pracy w godz. niezbędny do wyprodukowania 1 kg każdego proszku na każdej maszynie podaje 
tabela (czas 0 oznacza brak możliwości produkcji). W ciągu tygodnia każda linia może pracować do 60 godz. 
Należy wyprodukować po 3000 kg tygodniowo proszków A i C, 3200 kg proszku B oraz 2700 kg proszku D. 
Aby zrealizować zamówienie firma rozważa możliwość dokupienia pewnej ilości proszków (ceny zakupu w 
tabeli). Zbuduj model matematyczny pozwalający określić plan produkcji proszków, aby koszt realizacji 
zamówień był najmniejszy.

Proszki

Cena 
zakupu

Koszt 
produkcji

Linie produkcyjne

1

2

3

4

5

A

2.1

1,56

0.05

0.06

0

0.12

0.06

B

2,4

2,2

0.02

0.05

0.07

0.05

0.1

C

2,3

2.0

0

0

0.1

0.11

0.08

D

2

1.4

0.01

0

0.03

0.04

0.01

background image

39. Dysponujemy zespołem trzech obrabiarek. Na każdej z nich można wytwarzać jeden z czterech elementów 
(tylko na 3 obrabiarce nie można wykonywać trzeciego elementu). W tabeli dane są  koszty wytworzenia 
jednego elementu , wydajność w szt/godz na każdej obrabiarce oraz maksymalny czas wykorzystania każdej z 
maszyn i zapotrzebowanie na każdy z wytwarzanych elementów. Ustal plan produkcji który zminimalizuje 
łączny koszt wytworzenia wszystkich elementów wiedząc że, minimalna liczba elementów E1 do E4 wynosi 
odpowiednio: 1000, 800, 500, 400 a łączna liczba wszystkich elementów musi być większa od 3500.
Jak się zmieni rozwiązanie, jeżeli przyjąć dodatkowo, że łączny czas wykorzystania 1 i 3 obrabiarki nie może 
przekroczyć 150 godzin.

Obrabiarki / czas prod  w 
godz

ELEMENTY

E1

E2

E3

E4

O1 50

Koszt 
w zł.

5

8

4

10

Wydajność 
szt/godz.

10

16

12

14

O2 120 Koszt 

w zł.

8

7

9

6

Wydajność 
szt/godz.

15

24

18

21

O3 110 Koszt 

w zł.

3

10

0

5

Wydajność 
szt/godz.

5

3

0

7

40. Planowana jest produkcja pewnego wyroby w czterech kolejnych kwartałach roku. Zapotrzebowanie na 
wyrób w kolejnych kwartałach wynosi: 100, 50, 80, 70 szt. Koszt zwiększenia poziomu produkcji o jedną sztukę 
wynosi 1500 zł a zmniejszenia o jedna sztukę 500 zł.  Koszt magazynowania jednostki wyrobu przez jeden 
kwartał wynosi 1000 zł.  Wiadomo ponad to, że poziom zapas na początku i końcu roku wynosi zero a poziom 
produkcji w ostatnim kwartale poprzedniego roku wynosił 60 sztuk. Ustal plan produkcji, aby łączny koszt 
produkcji i magazynowania był jak najmniejszy. 

Zadanie 41:Trzy zakłady poprzez emisję zanieczyszczeń wywołują straty w środowisku przyrodniczym. Emisja 
szkodliwych substancji przeliczona na jednostkę produkcji wynosi dla tych zakładów odpowiednio: [w 
tonach/szt prod.] S1 =3; S2 =14; S3 =8. Dobowa ilość wytwarzanych jednostek produkcji wynosi [w szt]: P1 
=35; P2 =15; P3 =10. Koszt redukcji zanieczyszczeń danego zakładu, w przeliczeniu na jednostkę danego typu 
szkód wynosi: [w zł/tonę zanieczyszczeń] J1 =6; J2 =9; J3 =15. 
Należy możliwie jak najefektywniej z punktu widzenia ochrony środowiska, zagospodarować środki z Funduszu 
Środowiska (F=2000), przy założeniu, że w przypadku podjęcia działań redukcji zanieczyszczeń, zarząd miasta 
zlokalizowanego w pobliżu drugiego zakładu gotów  jest dofinansować takie działania w pobliżu zakładu nr 2 w 
kwocie M równej 1500 zł. 


Document Outline