background image

1

CALCULUS I

DIFFERENTIAL CALCULUS

Mathematical Analysis I

background image

2

2

background image

3

2

Pythagoreans 

a school

in some ways a brotherhood, and in 

some ways a monastery.

 

Pythagoras of Samos

between 580 and 572 BC 
(between 500 and 490 BC)
 
 

background image

4

Zeno of Elea (490-430 BC): On the paradox of motion

background image

5

Achilles

Tortoise

background image

6

background image

7

  

 

                    

              

ISAAC NEWTON 1643 – 1727, England 

background image

8

Gottfried Leibniz, 1647-1716, Germany

background image

9

Augustin Louis Cauchy, 1789 -1857, France

background image

10

LIMIT OF A SEQUENCE

Lecture 1

background image

11

A SEQUENCE

background image

12

A SEQUENCE

background image

13

,

x

x

0

...

,

1

,

0

n

,

x

,

,

x

,

x

F

x

0

1

n

n

1

n

r

x

x

n

1

n

n

1

n

x

q

x

Example 2 

       

recursive definition

arithmetic sequence - common difference

geometric sequence - common ratio

background image

14

background image

15

n

1

2

1

a

n

n

)

(

is divergent

Example 4

 

background image

16

Example 5 Take a calculator, set it to "radian mode" and enter the 
number 1. Then, hit the function cosine over and over again. Analyse the 
output of this experiment. 

background image

17

We graph the points (n, x

n

) on a plane

The points ‘converge’ to about 0.73

background image

18

Example 6 As before, take your calculator and enter the number 0.3. 
Second, program your machine to compute y = (x) = 4(1- xx

Then, keep on doing the same as you did in the previous two examples.
 Finally, analyse the output. 

background image

19

The plot of the sequence   x

n

 = 4(1- x

n-1

x

n-1

   (the first 50-ty terms)  

Completely chaotic - divergent

background image

20

LIMIT OF A SEQUENCE

background image

21

If the limit of the sequence (a

n

) exists then we say the sequence (a

n

) is 

convergent; otherwise, we say the sequence (a

n

) is divergent

No matter how small the number       is, at some ‘moment’ the terms of the sequence 
enter the band of width        and stay there

 

n

a

n

q

q+ε

q-ε

x

x

x

x

x

x

x

x

x

x x x

x

x

x

x

x

x

background image

22

Suppose that  the sequences  (a

n

)

nN

 and  (b

n

)

nN

   are convergent then for            :

.

,

,

,

,

,

,

0

0

0

1

0

0

0

INDETERMINATE FORMS: 

,

b

b

lim

,

a

a

lim

n

n

n

n

,

0

A

A

)

A

(

lim

.

6

R

C

,

a

)

a

(

lim

.

5

0

b

lim

if

b

a

b

a

lim

.

4

b

a

)

b

a

(

lim

.

3

,

b

a

)

b

a

(

lim

.

2

a

C

)

a

C

(

lim

.

1

a

a

n

C

C

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

R

C

background image

23

How to use the definition to find the limit.

0

n

)

1

(

lim

n

n

background image

24

1. 

Guess

background image

25

background image

26

background image

27

background image

28

background image

29

Theorem

If the limit              exists, it must be unique.

          If a

n

 is convergent then it has only one limit.

Proof
Suppose that  q’, q’’ are limits of (a

n

) and that

                 
.Let N’  be a  natural number such that if                    then

 Let N”  be a  natural number such that if                    then
                          

"

q

'

q

and

''

q

'

q

,'

N

n

3

1

'

q

a

n

,

"

N

n

3

1

"

q

a

n

Let N = sup{N’,N”}, so that 

3

2

3

1

3

1

"

q

a

a

'

q

"

q

a

a

'

q

"

q

'

q

n

n

n

n

3

2

"

q

'

q

and

"

q

'

q

We obtain a contradiction

QED

n

n

a

lim

background image

30

0

q

n

n

lim

1

q 

 0

q

n

q

n

log

log

1

q

n

0

log

log

IMPORTANT LIMITS

1.

 

,for

Sketch  of  proof:   

 

          

so

 

QED

1

a

lim

n

n

1

a

2

n

x

2

1

n

n

nx

1

x

1

R

x

N

n

 ,

,for

 

For proof we need the Bernoulli Inequality

,  

where 

2.

QE

D

background image

31

Theorem                           SQUEEZE  PRINCIPLE   
                                     
Sandwich, Policeman Theorem )

     

n

n

n

c

,

b

,

a

n

n

n

c

b

a

q

c

lim

a

lim

n

n

n

n

q

b

n

n

lim

Assume that the sequences 

 satisfy

.

then

0

n

n

some

for

an
d

background image

32

n

n

n

n

n

5

4

3

lim

n

n

n

n

n

n

n

n

5

3

5

4

3

5

EXAMPL
E              
                 
                 
         

n

n

n

5

3

n

n

5

5

background image

33

.

lim

1

n

n

n

background image

34

Theorem

Every convergent sequence is bounded.

background image

35

Note:

Boundedness   is necessary but not sufficient to guaranty convergence.

Example:

                (-1)

n

  bounded, 

divergent

background image

36

Theorem                                                                     
                                 BOUNDED MONOTONE  SEQUENCE 
THEOREM

Let  a

 be a  monotone sequence

 

 increasing a

≤ a

n+1   

or  

decreasing   a

n+1 

≤ a

n   

for all a

n

, except maybe some first terms  a

1

, a

2

a

3

,... a

)

(i)

  

If  a

 is bounded

  (appropriately:a) bounded above i.e.  there 

exists an upper bound U such that  a

≤ U 

 

 or b)bounded below i.e. 

there exists a lower bound  L such that L

 

≤ a

n+1 

) 

   

then   a

 it is 

convergent.

(ii)

  

If a

 is unbounded then it is divergent

 to either            .

http://demonstrations.wolfram.com/ConvergenceOfAMonotonicSequence/

background image

37

.

!

lim

0

n

a

n

n

background image

38

IMPORTANT   EXAMPLE THE NUMBER e:

The definition (existence)  of number  e –  the base of the  
natural  logarithm,  
the Euler number

n

n

n

1

1

x

 

We will use the monotone bounded sequence theorem  to prove the  existence of   

n

n

n

1

1

lim

e

 

background image

39

1.

  

We will show that

  

)

(

n

x

 

is an increasing sequence 





2

1

1

2

1

1

2

1

2

n

3

2

1

2

1

2

1

2

n

1

3

1

2

1

2

x

1

n

2

n

!

!

!

2. And that (x

n

) is bounded

QED

background image

40

e  ≈ 2,718281828459045....

background image

41

Definition
The sequence (a

n

diverges to positive infinity             iff

     Example

     The sequence                   is divergent to infinity

M

a

n

M

a

lim

n

n

n



Definition   
The sequence (a

n

) diverges to minus infinity             iff  

N

n

n

2

)

(

M

a

n

M

a

lim

n

n

n



background image

42

Definition 
subsequence of the sequence (x

n

) is a sequence of the form 

( x

a(n)

 ), where the a(n) are natural numbers with a(n) < a(n+1) 

for all n.

Intuitively, a subsequence omits (loses) some elements of the 
original sequence. 

Theorem
A sequence is convergent if and only if all of its 
subsequences converge towards the same limit.

background image

43

.

,

,

,

,

,

,

0

0

0

1

0

0

0

INDETERMINATE FORMS: 

background image

44

EXTENDED ARITHMETIC
For the sake of convenience in dealing with indeterminate forms, we 
define the following arithmetic operations with real numbers, positive 
infinity and negative infinity.
Let c be a real number and c > 0, then we define:









































)

)(

(

)

)(

(

)

)(

(

.

6

0

)

(

)

(

.

5

0

c

0

c

0

c

,

0

c

.

4

,

.

3

)

(

)

c

(

,

)

(

)

c

(

,

)

(

c

,

)

(

c

.

2

,

c

.

1

c

c

background image

45

0

p

,

n

1

lim

0

p

,

0

n

1

lim

p

n

p

n



1

q

,

q

lim

1

q

,

0

q

lim

n

n

n

n

1

a

,

1

a

lim

n

n

1

n

lim

n

n

0

k

,

1

a

,

n

a

lim

k

n

n



0

!

n

a

lim

n

n

A

a

n

a

e

a

A

1

lim

n

n





;      

;       

,       

;

;      

;         

.

IMPORTANT LIMITS

background image

46

Let

 

n

n

b

a 

( a

is „slower”  then b

)  if

0

b

a

lim

n

n

n

then for some n > n

0

:

n

n

n

n

n

k

3

2

a

n

n

!

n

a

2

n

n

n

n

n

log

background image

47

Examples


Document Outline