Model 1: Estymacja KMNK, wykorzystane obserwacje 1950-1982 (N = 33) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna zależna: Pt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik błąd standardowy t-Studenta wartość p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const 57,7598 1,30988 44,10 1,55e-029 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time 2,27194 0,0672247 33,80 5,00e-026 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średn.aryt.zm.zależnej 96,38273 Odch.stand.zm.zależnej 22,26473 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Suma kwadratów reszt 419,1614 Błąd standardowy reszt 3,677137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wsp. determ. R-kwadrat 0,973576 Skorygowany R-kwadrat 0,972724 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(1, 31) 1142,182 Wartość p dla testu F 5,00e-26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Logarytm wiarygodności -88,76382 Kryt. inform. Akaike'a 181,5276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kryt. bayes. Schwarza 184,5207 Kryt. Hannana-Quinna 182,5347 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Autokorel.reszt - rho1 0,093765 Stat. Durbina-Watsona 1,488040 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model 2: Estymacja KMNK, wykorzystane obserwacje 1950-1982 (N = 33) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna zależna: Pt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik błąd standardowy t-Studenta wartość p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const 55,7335 2,01992 27,59 7,07e-023 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time 2,61930 0,273910 9,563 1,28e-010 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sq_time -0,0102165 0,00781539 -1,307 0,2011 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średn.aryt.zm.zależnej 96,38273 Odch.stand.zm.zależnej 22,26473 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Suma kwadratów reszt 396,5722 Błąd standardowy reszt 3,635804 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wsp. determ. R-kwadrat 0,975000 Skorygowany R-kwadrat 0,973333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(2, 30) 585,0035 Wartość p dla testu F 9,31e-25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Logarytm wiarygodności -87,84976 Kryt. inform. Akaike'a 181,6995 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kryt. bayes. Schwarza 186,1890 Kryt. Hannana-Quinna 183,2101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Autokorel.reszt - rho1 0,104823 Stat. Durbina-Watsona 1,549921 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dla 95% przedziału ufności, t(31, 0,025) = 2,040 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obs Pt prognoza błąd ex ante 95% przedział ufności |
|
|
|
|
|
|
|
|
|
|
ex ante |
ex post |
|
|
|
|
|
|
|
|
|
|
T |
yT |
yTP |
VT |
VT* |
σT |
σT* |
granica dolna |
granica górna |
1983 |
128,5 |
135 |
3,9 |
127 |
- |
143 |
|
1983 |
128,5 |
135 |
3,9 |
2,89% |
-6,5 |
-5,06% |
127,00 |
143,00 |
1984 |
137,1 |
137,3 |
3,92 |
129,3 |
- |
145,3 |
|
1984 |
137,1 |
137,3 |
3,92 |
2,86% |
-0,200000000000017 |
-0,15% |
129,30 |
145,30 |
1985 |
144,9 |
139,5 |
3,94 |
131,5 |
- |
147,6 |
|
1985 |
144,9 |
139,5 |
3,94 |
2,82% |
5,40000000000001 |
3,73% |
131,50 |
147,60 |
|
|
|
|
|
|
|
|
|
|
|
VTG |
2,86% |
σTG |
3,00% |
|
|
Miary dokładności prognoz ex post |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd predykcji ME = -0,44429 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd średniokwadratowy MSE = 23,661 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Pierwiastek błędu średniokwadr. RMSE = 4,8642 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd absolutny MAE = 4,0112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd procentowy MPE = -0,49995 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni absolutny błąd procentowy MAPE = 2,9616 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynnik Theila (w procentach) I = 0,44456 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział obciążoności predykc. I1^2/I^2 = 0,0083425 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział niedost.elastyczności I2^2/I^2 = 0,99015 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział niezgodności kierunku I3^2/I^2 = 0,0015027 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model 1: Estymacja KMNK, wykorzystane obserwacje 1980:01-1984:07 (N = 55) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna zależna: Kt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik błąd standardowy t-Studenta wartość p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
------------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const -1,60218e+06 193637 -8,274 4,09e-011 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time 240383 6016,02 39,96 3,00e-041 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średn.aryt.zm.zależnej 5128552 Odch.stand.zm.zależnej 3914539 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Suma kwadratów reszt 2,66e+13 Błąd standardowy reszt 708257,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wsp. determ. R-kwadrat 0,967871 Skorygowany R-kwadrat 0,967264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(1, 53) 1596,579 Wartość p dla testu F 3,00e-41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Logarytm wiarygodności -817,9039 Kryt. inform. Akaike'a 1639,808 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kryt. bayes. Schwarza 1643,822 Kryt. Hannana-Quinna 1641,360 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Autokorel.reszt - rho1 0,881230 Stat. Durbina-Watsona 0,195005 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model 2: Estymacja KMNK, wykorzystane obserwacje 1980:01-1984:07 (N = 55) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna zależna: Kt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik błąd standardowy t-Studenta wartość p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const -417872 207840 -2,011 0,0496 ** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time 115719 17123,6 6,758 1,20e-08 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sq_time 2226,15 296,408 7,510 7,61e-010 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średn.aryt.zm.zależnej 5128552 Odch.stand.zm.zależnej 3914539 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Suma kwadratów reszt 1,28e+13 Błąd standardowy reszt 495223,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wsp. determ. R-kwadrat 0,984588 Skorygowany R-kwadrat 0,983996 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(2, 52) 1661,028 Wartość p dla testu F 7,66e-48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Logarytm wiarygodności -797,7012 Kryt. inform. Akaike'a 1601,402 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kryt. bayes. Schwarza 1607,424 Kryt. Hannana-Quinna 1603,731 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Autokorel.reszt - rho1 0,806067 Stat. Durbina-Watsona 0,368803 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(53, 52) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prawostronne prawdopodobieństwo = 0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prawdopodobieństwo dopełnienia = 0,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Krytyczna wart. = 1,58211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
2,04540475214344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model 3: Estymacja KMNK, wykorzystane obserwacje 1980:01-1984:07 (N = 55) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna zależna: Kt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik błąd standardowy t-Studenta wartość p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const 103405 269034 0,3844 0,7023 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time 8803,38 41231,7 0,2135 0,8318 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sq_time 6956,43 1702,60 4,086 0,0002 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time3 -56,3129 19,9962 -2,816 0,0069 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średn.aryt.zm.zależnej 5128552 Odch.stand.zm.zależnej 3914539 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Suma kwadratów reszt 1,10e+13 Błąd standardowy reszt 465191,2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wsp. determ. R-kwadrat 0,986662 Skorygowany R-kwadrat 0,985878 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(3, 51) 1257,591 Wartość p dla testu F 8,89e-48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Logarytm wiarygodności -793,7264 Kryt. inform. Akaike'a 1595,453 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kryt. bayes. Schwarza 1603,482 Kryt. Hannana-Quinna 1598,558 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Autokorel.reszt - rho1 0,799897 Stat. Durbina-Watsona 0,429862 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wyłączając stałą, największa wartość p jest dla zmiennej 2 (time) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(52, 51) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prawostronne prawdopodobieństwo = 0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prawdopodobieństwo dopełnienia = 0,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Krytyczna wart. = 1,5893 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
1,13328596205613 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model 4: Estymacja KMNK, wykorzystane obserwacje 1980:01-1984:07 (N = 55) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna zależna: Kt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik błąd standardowy t-Studenta wartość p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const -473667 234004 -2,024 0,0495 ** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time 120059 19308,5 6,218 2,12e-07 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sq_time 2155,84 334,663 6,442 1,02e-07 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q1 223859 234821 0,9533 0,3460 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q2 106344 234476 0,4535 0,6526 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q3 68460,7 234274 0,2922 0,7716 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q4 -73882,1 234208 -0,3155 0,7540 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q5 15811,7 234274 0,06749 0,9465 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q6 -16691,5 234476 -0,07119 0,9436 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q7 67454,4 234821 0,2873 0,7754 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q8 24303,2 259773 0,09356 0,9259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q9 -38259,5 259731 -0,1473 0,8836 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q10 -45451,5 259717 -0,1750 0,8619 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q11 -239181 259731 -0,9209 0,3625 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średn.aryt.zm.zależnej 5128552 Odch.stand.zm.zależnej 3914539 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Suma kwadratów reszt 1,21e+13 Błąd standardowy reszt 543446,0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wsp. determ. R-kwadrat 0,985367 Skorygowany R-kwadrat 0,980727 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(13, 41) 212,3717 Wartość p dla testu F 2,87e-33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Logarytm wiarygodności -796,2759 Kryt. inform. Akaike'a 1620,552 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kryt. bayes. Schwarza 1648,654 Kryt. Hannana-Quinna 1631,419 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Autokorel.reszt - rho1 0,828443 Stat. Durbina-Watsona 0,335666 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wyłączając stałą, największa wartość p jest dla zmiennej 21 (Q5) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dla 95% przedziału ufności, t(52, 0,025) = 2,007 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obs Kt prognoza błąd ex ante 95% przedział ufności |
|
|
|
|
|
|
|
|
|
|
ex ante |
ex post |
|
|
|
|
|
|
|
|
|
|
T |
yT |
yTP |
VT |
VT* |
σT |
σT* |
granica dolna |
granica górna |
1984:08:00 |
13717994,75 |
13043599,47 |
537069,597 |
11965890,48 |
- |
14121308,46 |
|
1984:08:00 |
13717994,75 |
13043599,47 |
537069,597 |
4,12% |
674395,279999999 |
4,92% |
11965890,48 |
14121308,46 |
1984:09:00 |
13938299,17 |
13410873,39 |
543199,949 |
12320862,95 |
- |
14500883,83 |
|
1984:09:00 |
13938299,17 |
13410873,39 |
543199,949 |
4,05% |
527425,779999999 |
3,78% |
12320862,95 |
14500883,83 |
1984:10:00 |
14309128,42 |
13782599,61 |
550020,256 |
12678903,22 |
- |
14886296 |
|
1984:10:00 |
14309128,42 |
13782599,61 |
550020,256 |
3,99% |
526528,810000001 |
3,68% |
12678903,22 |
14886296,00 |
|
|
|
|
|
|
|
|
|
|
|
VTG |
4,00% |
σTG |
3,75% |
|
|
Miary dokładności prognoz ex post |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd predykcji ME = 5,7612e+005 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd średniokwadratowy MSE = 3,3674e+011 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Pierwiastek błędu średniokwadr. RMSE = 5,8029e+005 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd absolutny MAE = 5,7612e+005 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd procentowy MPE = 4,1266 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni absolutny błąd procentowy MAPE = 4,1266 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynnik Theila (w procentach) I = 1,7344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział obciążoności predykc. I1^2/I^2 = 0,98566 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział niedost.elastyczności I2^2/I^2 = 0,010779 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział niezgodności kierunku I3^2/I^2 = 0,0035632 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model 1: Estymacja KMNK, wykorzystane obserwacje 1980:01-1982:09 (N = 33) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna zależna: Tt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik błąd standardowy t-Studenta wartość p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
const |
303,25 |
3,93392 |
77,09 |
3,00E-27 |
*** |
|
|
|
|
Q1 |
-152,583 |
12,3708 |
-12,33 |
4,38E-11 |
*** |
|
|
|
|
Q2 |
-86,25 |
12,3708 |
-6,972 |
6,94E-07 |
*** |
|
|
|
|
Q3 |
-101,583 |
12,3708 |
-8,212 |
5,41E-08 |
*** |
|
|
|
|
Q4 |
-68,5833 |
12,3708 |
-5,544 |
1,68E-05 |
*** |
|
|
|
|
Q5 |
56,4167 |
12,3708 |
4,56 |
0,0002 |
*** |
|
|
|
|
Q6 |
160,417 |
12,3708 |
12,97 |
1,72E-11 |
*** |
|
|
|
|
Q7 |
259,75 |
12,3708 |
21 |
1,41E-15 |
*** |
|
|
|
|
Q8 |
290,083 |
12,3708 |
23,45 |
1,52E-16 |
*** |
|
|
|
|
Q9 |
36,0833 |
12,3708 |
2,917 |
0,0082 |
*** |
|
|
|
|
Q10 |
-38,75 |
14,8936 |
-2,602 |
0,0167 |
** |
|
|
|
|
Q11 |
-162,75 |
14,8936 |
-10,93 |
4,01E-10 |
*** |
|
|
|
|
Q12 |
-192,2507 |
|
|
|
|
|
|
|
|
Średn.aryt.zm.zależnej 315,1818 Odch.stand.zm.zależnej 159,9161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Suma kwadratów reszt 10399,67 Błąd standardowy reszt 22,25359 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wsp. determ. R-kwadrat 0,987292 Skorygowany R-kwadrat 0,980635 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(11, 21) 148,3156 Wartość p dla testu F 2,47e-17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Logarytm wiarygodności -141,7498 Kryt. inform. Akaike'a 307,4997 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kryt. bayes. Schwarza 325,4577 Kryt. Hannana-Quinna 313,5420 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Autokorel.reszt - rho1 0,480584 Stat. Durbina-Watsona 1,012575 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dla 95% przedziału ufności, t(21, 0,025) = 2,080 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obs Tt prognoza błąd ex ante 95% przedział ufności |
|
|
|
|
|
|
|
|
|
|
ex ante |
ex post |
|
|
|
|
|
|
|
|
|
|
T |
yT |
yTP |
VT |
VT* |
σT |
σT* |
granica dolna |
granica górna |
1982:10:00 |
294 |
264,5 |
27,255 |
207,82 |
- |
321,18 |
|
1982:10:00 |
294 |
264,5 |
27,255 |
10,30% |
29,5 |
10,03% |
207,82 |
321,18 |
1982:11:00 |
195 |
140,5 |
27,255 |
83,82 |
- |
197,18 |
|
1982:11:00 |
195 |
140,5 |
27,255 |
19,40% |
54,5 |
27,95% |
83,82 |
197,18 |
1982:12:00 |
187 |
111 |
27,255 |
54,32 |
- |
167,68 |
|
1982:12:00 |
187 |
111 |
27,255 |
24,55% |
76 |
40,64% |
54,32 |
167,68 |
|
|
|
|
|
|
|
|
|
|
|
VTG |
15,00% |
σTG |
15,00% |
|
|
Miary dokładności prognoz ex post |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd predykcji ME = 53,333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd średniokwadratowy MSE = 3205,5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Pierwiastek błędu średniokwadr. RMSE = 56,617 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd absolutny MAE = 53,333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd procentowy MPE = 26,208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni absolutny błąd procentowy MAPE = 26,208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynnik Theila (w procentach) I = 1,2723 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział obciążoności predykc. I1^2/I^2 = 0,88736 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział niedost.elastyczności I2^2/I^2 = 0,10292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział niezgodności kierunku I3^2/I^2 = 0,0097151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model 1: Estymacja KMNK, wykorzystane obserwacje 1980:01-1985:09 (N = 69) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna zależna: St |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik błąd standardowy t-Studenta wartość p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const 2469,93 148,006 16,69 1,47e-025 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time 25,2661 3,67536 6,874 2,54e-09 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średn.aryt.zm.zależnej 3354,246 Odch.stand.zm.zależnej 788,1810 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Suma kwadratów reszt 24771299 Błąd standardowy reszt 608,0468 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wsp. determ. R-kwadrat 0,413608 Skorygowany R-kwadrat 0,404856 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(1, 67) 47,25805 Wartość p dla testu F 2,54e-09 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Logarytm wiarygodności -539,1994 Kryt. inform. Akaike'a 1082,399 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kryt. bayes. Schwarza 1086,867 Kryt. Hannana-Quinna 1084,171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Autokorel.reszt - rho1 0,821038 Stat. Durbina-Watsona 0,350434 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model 2: Estymacja KMNK, wykorzystane obserwacje 1980:01-1985:09 (N = 69) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna zależna: St |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik błąd standardowy t-Studenta wartość p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const 2067,73 218,216 9,476 6,27e-014 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time 59,2555 14,3859 4,119 0,0001 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sq_time -0,485564 0,199168 -2,438 0,0175 ** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średn.aryt.zm.zależnej 3354,246 Odch.stand.zm.zależnej 788,1810 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Suma kwadratów reszt 22724812 Błąd standardowy reszt 586,7839 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wsp. determ. R-kwadrat 0,462053 Skorygowany R-kwadrat 0,445752 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(2, 66) 28,34433 Wartość p dla testu F 1,30e-09 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Logarytm wiarygodności -536,2245 Kryt. inform. Akaike'a 1078,449 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kryt. bayes. Schwarza 1085,151 Kryt. Hannana-Quinna 1081,108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Autokorel.reszt - rho1 0,814262 Stat. Durbina-Watsona 0,382471 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(67, 66) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prawostronne prawdopodobieństwo = 0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prawdopodobieństwo dopełnienia = 0,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Krytyczna wart. = 1,50182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
1,07378574913341 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model 3: Estymacja KMNK, wykorzystane obserwacje 1980:01-1985:09 (N = 69) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna zależna: St |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik błąd standardowy t-Studenta wartość p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const |
2556,49 |
83,0603 |
30,78 |
8,85E-37 |
*** |
|
|
|
|
|
time |
22,7169 |
2,06445 |
11 |
1,27E-15 |
*** |
|
|
|
|
Q1 |
-554,544 |
133,149 |
-4,165 |
0,0001 |
*** |
|
|
|
|
Q2 |
-771,094 |
133,037 |
-5,796 |
3,26E-07 |
*** |
|
|
|
|
Q3 |
-617,811 |
132,957 |
-4,647 |
2,09E-05 |
*** |
|
|
|
|
Q4 |
-254,694 |
132,909 |
-1,916 |
0,0604 |
* |
|
|
|
|
Q5 |
90,0889 |
132,893 |
0,6779 |
0,5006 |
|
|
|
|
|
Q6 |
222,705 |
132,909 |
1,676 |
0,0994 |
* |
|
|
|
|
Q7 |
768,155 |
132,957 |
5,777 |
3,49E-07 |
*** |
|
|
|
|
Q8 |
800,938 |
133,037 |
6,02 |
1,41E-07 |
*** |
|
|
|
|
Q9 |
500,388 |
133,149 |
3,758 |
0,0004 |
*** |
|
|
|
|
Q10 |
261,939 |
144,434 |
1,814 |
0,0751 |
* |
|
|
|
|
Q11 |
-39,9778 |
144,419 |
-0,2768 |
0,7829 |
|
|
|
|
|
Q12 |
-406,0931 |
|
|
|
|
|
|
|
|
Średn.aryt.zm.zależnej 3354,246 Odch.stand.zm.zależnej 788,1810 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Suma kwadratów reszt 6444055 Błąd standardowy reszt 339,2233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wsp. determ. R-kwadrat 0,847455 Skorygowany R-kwadrat 0,814767 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(12, 56) 25,92536 Wartość p dla testu F 1,46e-18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Logarytm wiarygodności -492,7442 Kryt. inform. Akaike'a 1011,488 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kryt. bayes. Schwarza 1040,532 Kryt. Hannana-Quinna 1023,011 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Autokorel.reszt - rho1 0,788161 Stat. Durbina-Watsona 0,425210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wyłączając stałą, największa wartość p jest dla zmiennej 27 (Q11) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dla 95% przedziału ufności, t(56, 0,025) = 2,003 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obs St prognoza błąd ex ante 95% przedział ufności |
|
|
|
|
|
|
|
|
|
|
ex ante |
ex post |
|
|
|
|
|
|
|
|
|
|
T |
yT |
yTP |
VT |
VT* |
σT |
σT* |
granica dolna |
granica górna |
1985:10:00 |
4209 |
4408,61 |
378,96 |
3649,46 |
- |
5167,76 |
|
1985:10:00 |
4209 |
4408,61 |
378,96 |
8,60% |
-199,61 |
-4,74% |
3649,46 |
5167,76 |
1985:11:00 |
3928 |
4129,41 |
378,96 |
3370,26 |
- |
4888,56 |
|
1985:11:00 |
3928 |
4129,41 |
378,96 |
9,18% |
-201,41 |
-5,13% |
3370,26 |
4888,56 |
1985:12:00 |
3663 |
3786,01 |
378,96 |
3026,86 |
- |
4545,16 |
|
1985:12:00 |
3663 |
3786,01 |
378,96 |
10,01% |
-123,01 |
-3,36% |
3026,86 |
4545,16 |
|
|
|
|
|
|
|
|
|
|
|
VTG |
8,90% |
σTG |
8,00% |
|
|
Miary dokładności prognoz ex post |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd predykcji ME = -174,67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd średniokwadratowy MSE = 31847 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Pierwiastek błędu średniokwadr. RMSE = 178,46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd absolutny MAE = 174,67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd procentowy MPE = -4,4093 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni absolutny błąd procentowy MAPE = 4,4093 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynnik Theila (w procentach) I = 0,60253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział obciążoności predykc. I1^2/I^2 = 0,95807 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział niedost.elastyczności I2^2/I^2 = 0,032841 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział niezgodności kierunku I3^2/I^2 = 0,009087 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model 1: Estymacja KMNK, wykorzystane obserwacje 1950:1-1957:2 (N = 30) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna zależna: Pt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik błąd standardowy t-Studenta wartość p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const 69145,6 3571,35 19,36 9,49e-018 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time 4437,76 201,170 22,06 3,06e-019 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średn.aryt.zm.zależnej 137930,9 Odch.stand.zm.zależnej 40175,61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Suma kwadratów reszt 2,55e+09 Błąd standardowy reszt 9537,011 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wsp. determ. R-kwadrat 0,945592 Skorygowany R-kwadrat 0,943649 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(1, 28) 486,6340 Wartość p dla testu F 3,06e-19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Logarytm wiarygodności -316,4213 Kryt. inform. Akaike'a 636,8427 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kryt. bayes. Schwarza 639,6450 Kryt. Hannana-Quinna 637,7392 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Autokorel.reszt - rho1 -0,185687 Stat. Durbina-Watsona 2,267382 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model 2: Estymacja KMNK, wykorzystane obserwacje 1950:1-1957:2 (N = 30) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna zależna: Pt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik błąd standardowy t-Studenta wartość p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const 60549,7 5273,61 11,48 6,77e-012 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time 6049,49 784,199 7,714 2,69e-08 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sq_time -51,9912 24,5454 -2,118 0,0435 ** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średn.aryt.zm.zależnej 137930,9 Odch.stand.zm.zależnej 40175,61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Suma kwadratów reszt 2,18e+09 Błąd standardowy reszt 8993,490 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wsp. determ. R-kwadrat 0,953345 Skorygowany R-kwadrat 0,949889 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(2, 27) 275,8587 Wartość p dla testu F 1,07e-18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Logarytm wiarygodności -314,1154 Kryt. inform. Akaike'a 634,2309 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kryt. bayes. Schwarza 638,4345 Kryt. Hannana-Quinna 635,5756 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Autokorel.reszt - rho1 -0,332672 Stat. Durbina-Watsona 2,629307 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(28, 27) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prawostronne prawdopodobieństwo = 0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prawdopodobieństwo dopełnienia = 0,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Krytyczna wart. = 1,89752 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
1,12452225524228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model 3: Estymacja KMNK, wykorzystane obserwacje 1950:1-1957:2 (N = 30) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna zależna: Pt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik błąd standardowy t-Studenta wartość p |
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
const |
70005,8 |
2099,08 |
33,35 |
3,01E-22 |
*** |
|
|
|
|
time |
4407,93 |
118,223 |
37,28 |
1,96E-23 |
*** |
|
|
|
|
Q1 |
-8705,82 |
1734,49 |
-5,019 |
3,55E-05 |
*** |
|
|
|
|
Q2 |
-3231,41 |
1734,49 |
-1,863 |
0,0742 |
* |
|
|
|
|
Q3 |
-479,978 |
1813,28 |
-0,2647 |
0,7934 |
|
|
|
|
|
Q4 |
12417,208 |
|
|
|
|
|
|
|
|
Średn.aryt.zm.zależnej 137930,9 Odch.stand.zm.zależnej 40175,61 |
|
|
|
|
|
|
|
|
|
Suma kwadratów reszt 7,83e+08 Błąd standardowy reszt 5595,320 |
|
|
|
|
|
|
|
|
|
Wsp. determ. R-kwadrat 0,983279 Skorygowany R-kwadrat 0,980603 |
|
|
|
|
|
|
|
|
|
F(4, 25) 367,5276 Wartość p dla testu F 8,21e-22 |
|
|
|
|
|
|
|
|
|
Logarytm wiarygodności -298,7239 Kryt. inform. Akaike'a 607,4478 |
|
|
|
|
|
|
|
|
|
Kryt. bayes. Schwarza 614,4538 Kryt. Hannana-Quinna 609,6891 |
|
|
|
|
|
|
|
|
|
Autokorel.reszt - rho1 0,266647 Stat. Durbina-Watsona 1,384799 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wyłączając stałą, największa wartość p jest dla zmiennej 11 (Q3) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dla 95% przedziału ufności, t(25, 0,025) = 2,060 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obs Pt prognoza błąd ex ante 95% przedział ufności |
|
|
|
|
|
|
|
|
|
|
ex ante |
ex post |
|
|
|
|
|
|
|
|
|
|
T |
yT |
yTP |
VT |
VT* |
σT |
σT* |
granica dolna |
granica górna |
1957:03:00 |
190533,3 |
206171,7 |
6273,61 |
193251 |
- |
219092,4 |
|
1957:03:00 |
190533,3 |
206171,7 |
6273,61 |
3,04% |
-15638,4 |
-8,21% |
193251,00 |
219092,40 |
1957:04:00 |
212243,3 |
223476,8 |
6273,61 |
210556,1 |
- |
236397,6 |
|
1957:04:00 |
212243,3 |
223476,8 |
6273,61 |
2,81% |
-11233,5 |
-5,29% |
210556,10 |
236397,60 |
1958:01:00 |
184520,5 |
206761,7 |
6304,72 |
193776,9 |
- |
219746,5 |
|
1958:01:00 |
184520,5 |
206761,7 |
6304,72 |
3,05% |
-22241,2 |
-12,05% |
193776,90 |
219746,50 |
|
|
|
|
|
|
|
|
|
|
|
VTG |
3,00% |
σTG |
4,00% |
|
|
Miary dokładności prognoz ex post |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd predykcji ME = -16371 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd średniokwadratowy MSE = 2,8847e+008 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Pierwiastek błędu średniokwadr. RMSE = 16985 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd absolutny MAE = 16371 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd procentowy MPE = -8,518 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni absolutny błąd procentowy MAPE = 8,518 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynnik Theila (w procentach) I = 0,69369 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział obciążoności predykc. I1^2/I^2 = 0,92906 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział niedost.elastyczności I2^2/I^2 = 0,043692 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział niezgodności kierunku I3^2/I^2 = 0,027245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model 1: Estymacja KMNK, wykorzystane obserwacje 1980:01-1984:04 (N = 52) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna zależna: Ut |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik błąd standardowy t-Studenta wartość p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const 11,2258 0,144997 77,42 9,84e-054 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time 0,152583 0,00476103 32,05 5,35e-035 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średn.aryt.zm.zależnej 15,26923 Odch.stand.zm.zależnej 2,367967 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Suma kwadratów reszt 13,27515 Błąd standardowy reszt 0,515270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wsp. determ. R-kwadrat 0,953579 Skorygowany R-kwadrat 0,952650 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(1, 50) 1027,091 Wartość p dla testu F 5,35e-35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Logarytm wiarygodności -38,28570 Kryt. inform. Akaike'a 80,57140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kryt. bayes. Schwarza 84,47389 Kryt. Hannana-Quinna 82,06752 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Autokorel.reszt - rho1 0,852177 Stat. Durbina-Watsona 0,326264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model 2: Estymacja KMNK, wykorzystane obserwacje 1980:01-1984:04 (N = 52) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna zależna: Ut |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik błąd standardowy t-Studenta wartość p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const 10,7596 0,207369 51,89 1,73e-044 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time 0,204377 0,0180507 11,32 2,78e-015 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sq_time -0,000977262 0,000330165 -2,960 0,0047 *** |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średn.aryt.zm.zależnej 15,26923 Odch.stand.zm.zależnej 2,367967 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Suma kwadratów reszt 11,26160 Błąd standardowy reszt 0,479404 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wsp. determ. R-kwadrat 0,960620 Skorygowany R-kwadrat 0,959012 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(2, 49) 597,6395 Wartość p dla testu F 3,84e-35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Logarytm wiarygodności -34,00882 Kryt. inform. Akaike'a 74,01765 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kryt. bayes. Schwarza 79,87138 Kryt. Hannana-Quinna 76,26183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Autokorel.reszt - rho1 0,803889 Stat. Durbina-Watsona 0,381683 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(50, 49) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prawostronne prawdopodobieństwo = 0,05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prawdopodobieństwo dopełnienia = 0,95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Krytyczna wart. = 1,60444 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F= |
1,1552245478431 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model 3: Estymacja KMNK, wykorzystane obserwacje 1980:01-1984:04 (N = 52) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Zmienna zależna: Ut |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
współczynnik błąd standardowy t-Studenta wartość p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--------------------------------------------------------------- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const |
11,1853 |
0,119218 |
93,82 |
1,49E-47 |
*** |
|
|
|
|
|
time |
0,152865 |
0,0039172 |
39,02 |
7,22E-33 |
*** |
|
|
|
|
Q1 |
0,533047 |
0,181475 |
2,937 |
0,0055 |
*** |
|
|
|
|
Q2 |
0,600182 |
0,18139 |
3,309 |
0,002 |
*** |
|
|
|
|
Q3 |
0,487318 |
0,18139 |
2,687 |
0,0106 |
** |
|
|
|
|
Q4 |
0,0944531 |
0,181475 |
0,5205 |
0,6057 |
|
|
|
|
|
Q5 |
-0,101224 |
0,201127 |
-0,5033 |
0,6176 |
|
|
|
|
|
Q6 |
-0,179089 |
0,200898 |
-0,8914 |
0,3782 |
|
|
|
|
|
Q7 |
-0,231953 |
0,200745 |
-1,155 |
0,2549 |
|
|
|
|
|
Q8 |
-0,284818 |
0,200668 |
-1,419 |
0,1637 |
|
|
|
|
|
Q9 |
-0,312682 |
0,200668 |
-1,558 |
0,1273 |
|
|
|
|
|
Q10 |
-0,415547 |
0,200745 |
-2,07 |
0,0451 |
** |
|
|
|
|
Q11 |
-0,218411 |
0,200898 |
-1,087 |
0,2836 |
|
|
|
|
|
Q12 |
0,0287239 |
|
|
|
|
|
|
|
|
Średn.aryt.zm.zależnej 15,26923 Odch.stand.zm.zależnej 2,367967 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Suma kwadratów reszt 6,893969 Błąd standardowy reszt 0,420438 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wsp. determ. R-kwadrat 0,975893 Skorygowany R-kwadrat 0,968475 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F(12, 39) 131,5642 Wartość p dla testu F 1,20e-27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Logarytm wiarygodności -21,24929 Kryt. inform. Akaike'a 68,49857 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Kryt. bayes. Schwarza 93,86474 Kryt. Hannana-Quinna 78,22336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Autokorel.reszt - rho1 0,955940 Stat. Durbina-Watsona 0,146755 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wyłączając stałą, największa wartość p jest dla zmiennej 20 (Q5) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Dla 95% przedziału ufności, t(39, 0,025) = 2,023 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Obs Ut prognoza błąd ex ante 95% przedział ufności |
|
|
|
|
|
|
|
|
|
|
ex ante |
ex post |
|
|
|
|
|
|
|
|
|
|
T |
yT |
yTP |
VT |
VT* |
σT |
σT* |
granica dolna |
granica górna |
1984:05:00 |
17,9 |
19,2 |
0,48 |
18,2 |
- |
20,2 |
|
1984:05:00 |
17,9 |
19,2 |
0,48 |
2,50% |
-1,3 |
-7,26% |
18,20 |
20,20 |
1984:06:00 |
17,8 |
19,3 |
0,48 |
18,3 |
- |
20,2 |
|
1984:06:00 |
17,8 |
19,3 |
0,48 |
2,49% |
-1,5 |
-8,43% |
18,30 |
20,20 |
1984:07:00 |
17,8 |
19,4 |
0,48 |
18,4 |
- |
20,3 |
|
1984:07:00 |
17,8 |
19,4 |
0,48 |
2,47% |
-1,6 |
-8,99% |
18,40 |
20,30 |
|
|
|
|
|
|
|
|
|
|
|
VTG |
1,75% |
σTG |
3,35% |
|
|
Miary dokładności prognoz ex post |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd predykcji ME = -1,4359 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Błąd średniokwadratowy MSE = 2,0748 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Pierwiastek błędu średniokwadr. RMSE = 1,4404 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd absolutny MAE = 1,4359 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni błąd procentowy MPE = -8,0536 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Średni absolutny błąd procentowy MAPE = 8,0536 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Współczynnik Theila (w procentach) I = 21,444 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział obciążoności predykc. I1^2/I^2 = 0,99377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział niedost.elastyczności I2^2/I^2 = 0,005878 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Udział niezgodności kierunku I3^2/I^2 = 0,00034736 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|