T1: POMPA CIEPLNA PELTIERA
OKREŚLENIE OPTYMALNEGO PUNKTU PRACY
Przebieg ćwiczenia
Celem ćwiczenia było określenie wydajności chłodniczej pompy , współczynnika wydajności chłodniczej . Do tego celu użyliśmy pompy cieplnej z łaźniami wodnymi po obu jej stronach, napełnionymi wodą o tej samej temperaturze. Podczas eksperymentu dokonuje się w funkcji czasu równoczesnych pomiarów temperatur Tgrz i Tchł obydwu stron modułu a także napięcia zasilania U oraz prądu I płynącego przez moduł.
Schemat i wygląd rzeczywisty układu do pomiaru wydajności chłodniczej.
POMIAR I
Czas t [s] |
Prąd I [A] |
Napięcie U [V] |
Temp. Tgrz [°C ] |
Temp. Tchł [°C ] |
0 |
5,00 |
19,1 |
21,7 |
20,3 |
60 |
5,04 |
20,8 |
32,7 |
15,3 |
120 |
5,04 |
21,7 |
42,2 |
15,0 |
180 |
5,04 |
22,4 |
48,5 |
15,8 |
240 |
5,04 |
22,9 |
53,4 |
16,8 |
300 |
5,05 |
23,7 |
58,1 |
18,2 |
360 |
5,05 |
24,3 |
62,8 |
19,2 |
420 |
5,05 |
24,9 |
67,4 |
20,1 |
480 |
5,05 |
25,6 |
71,6 |
21,0 |
540 |
5,04 |
26,1 |
75,6 |
22,1 |
600 |
5,04 |
26,7 |
80,4 |
22,9 |
a = 0,01688889
∆a= 0,00034332
b= 12,93111
∆b= 0,13456
Korelacja = 0,99856
[wykres bez danych (0;20,3) i (60;15,3)]
Obliczenie mocy chłodniczej.
Pchł= achł*C, gdzie C=1100 J/K
Pchł =(0,02 0,0003)*1100= (22 0,33) W
Obliczenie średniej mocy prądu przepływającego przez moduł.
Pel = Uśr*Iśr
Pel= 24,26*5,04 = 122,27 W
Obliczenie współczynnika wydajności chłodniczej.
nchł = Pchł / Pel
nchł = (22 0,33)/122,27 =( 0,18 0,01)
POMIAR II
Czas t [s] |
Prąd I [A] |
Napięcie U [V] |
Temp. Tgrz [°C ] |
Temp. Tchł [°C ] |
0 |
1,7 |
4,4 |
29,2 |
19,6 |
60 |
1,2 |
5,0 |
29,7 |
19,4 |
120 |
1,1 |
4,9 |
29,9 |
19,3 |
180 |
0,9 |
4,1 |
29,9 |
19,6 |
240 |
0,9 |
4,0 |
29,7 |
19,7 |
300 |
0,9 |
4,0 |
29,6 |
19,8 |
360 |
0,9 |
4,0 |
29,6 |
19,9 |
420 |
1,1 |
4,9 |
29,8 |
20,0 |
480 |
1,1 |
4,9 |
30,4 |
20,0 |
540 |
1,1 |
4,9 |
30,9 |
20,1 |
600 |
1,1 |
4,9 |
31,1 |
20,2 |
a= 0,001507491
∆a= 0,000065543
b= 19,33483
∆b= 0,02283
Korelacja= 0,99531
[ Wykres bez punktów: (0;19,6),
(120;19,3), (540;20,1)]
Obliczenie mocy chłodniczej.
Pchł= achł*C, gdzie C=1100 J/K
Pchł = (0,0015 0,000066)*1100 = (1,65 0,07) W
Obliczenie średniej mocy prądu przepływającego przez moduł.
Pel = Uśr*Iśr
Pel = 4,41*1,09 = 4,80
Obliczenie współczynnika wydajności chłodniczej.
nchł = Pchł / Pel
nchł = (1,65 0,07) /4,80 = (0,34 0,02)
POMIAR III
Czas t [s] |
Prąd I [A] |
Napięcie U [V] |
Temp. Tgrz [°C ] |
Temp. Tchł [°C ] |
0 |
2,7 |
10,6 |
30,0 |
19,0 |
60 |
2,6 |
10,6 |
33,4 |
17,6 |
120 |
2,5 |
10,7 |
35,1 |
17,8 |
180 |
2,5 |
10,6 |
36,8 |
18,1 |
240 |
2,4 |
10,6 |
38,5 |
18,5 |
300 |
2,4 |
10,6 |
39,6 |
18,9 |
360 |
2,3 |
10,5 |
40,6 |
19,2 |
420 |
2,3 |
10,5 |
41,5 |
19,4 |
480 |
2,3 |
10,5 |
42,4 |
19,7 |
540 |
2,3 |
10,6 |
43,3 |
20,0 |
600 |
2,2 |
10,6 |
44,0 |
20,2 |
a= 0,005087719
∆a= 0,000159388
b= 17,22456
∆b= 0,05951
Korelacja= 0,99707
[ Wykres bez punktów: (0;19),
(180;17,7),(600;20,2)
Obliczenie mocy chłodniczej.
Pchł= achł*C, gdzie C=1100 J/K
Pchł = (0,0051 0,00016)*1100 = (5,61 0,18) W
Obliczenie średniej mocy prądu przepływającego przez moduł.
Pel = Uśr*Iśr
Pel =10,58*2,41 = 25,49 W
Obliczenie współczynnika wydajności chłodniczej.
nchł = Pchł / Pel
nchł = (5,61 0,18) /25,49 = (0,22 0,01)
I [A] |
Pel [W] |
Pchł [W] |
nchł |
Tmin |
1,1 |
4,8 |
1,65 0,07 |
0,34 0,02 |
19,3 |
2,4 |
25,5 |
5,61 0,18 |
0,22 0,01 |
17,6 |
5,0 |
122,3 |
22,00 0,33 |
0,18 0,01 |
15,0 |
Pchł
= f(I) Tmin
= f(I)
Wnioski:
Po przeprowadzeniu pomiarów i obliczeniu poszczególnych wydajności i współczynników wnioskujemy, że temperatura modułu po której wydziela się ciepło rośnie wraz z mijającym czasem pomiaru oraz z serii na serię. W czasie poszczególnych pomiarów zauważamy że, temperatura Tchł w początkowych minutach pomiaru maleje aż do pewnego momentu, w którym zaczyna rosnąć ( na wykresach uwzględniamy jednakże punkty, które tworzą liniowy wykres funkcji) . Moc chłodnicza jest tym wyższa im wyższe jest natężenie prądy płynącego przez moduł. Średnia moc prądu rośnie wprost proporcjonalnie do natężenia. W przypadku współczynnika wydajności chłodniczej czyli stosunku mocy chłodniczej do mocy pobieranej przez urządzenie chłodnicze zauważamy, że wraz ze wzrostem natężenia prądu współczynnik ten jest coraz mniejszy ponieważ im wyższa temperatura otoczenia tym właściwości chłodzące coraz mniejsze.