3 Metoda Tangensów Artur


Overview

Bishopa
Szwedzka
Met tangensów


Sheet 1: Bishopa


METODA BISHOPA






































Numer paska Qsr [kN] u [kPa] u*b*1 tg j Qsr - ub1 (Qsr - ub1)*tgj c' c'*b*1 (Qsr - ub1)*tgj + c'b*1 a tga sina cosa Qsr*sina tga*tgj 1/cosa 1/m (Qsr - ub1)*tgj + c'b*1*1/m




















1 1 210.68 22.55 40.59 0.59 170.09 100.65 3.21 5.79 106.43 2.87 0.05 0.05 1.00 10.53 0.03 1.00 0.98 104.60
2 2 230.09 20.73 37.31 0.62 192.77 118.68 2.37 4.26 122.95 8.63 0.15 0.15 0.99 34.51 0.09 1.01 0.95 117.38
3 3 249.15 17.04 30.67 0.65 218.49 142.10 1.13 2.04 144.14 14.48 0.26 0.25 0.97 62.29 0.17 1.03 0.93 134.51
4 4 257.98 11.34 20.41 0.66 237.57 156.59 1.24 2.24 158.83 20.49 0.37 0.35 0.94 90.29 0.25 1.07 0.92 146.60
5 5 258.73 3.43 6.17 0.69 252.56 174.74 0.00 0.00 174.74 26.74 0.50 0.45 0.89 116.43 0.35 1.12 0.92 160.17
6 6 252.62 0.00 0.00 0.67 252.62 169.61 0.00 0.00 169.61 33.37 0.66 0.55 0.84 138.94 0.44 1.20 0.93 158.53
7 7 231.74 0.00 0.00 0.70 231.74 162.27 0.00 0.00 162.27 40.54 0.86 0.65 0.76 150.63 0.60 1.32 0.95 154.65
8 8 231.74 0.00 0.00 0.70 231.74 162.27 0.00 0.00 162.27 48.59 1.13 0.75 0.66 173.81 0.79 1.51 1.00 163.04
9 9 94.71 0.00 0.00 0.70 94.71 66.31 0.00 0.00 66.31 58.21 1.61 0.85 0.53 80.50 1.13 1.90 1.10 73.27
10 10 8.12 0.00 0.00 0.70 8.12 5.68 0.00 0.00 5.68 71.81 3.04 0.95 0.31 7.71 2.13 3.20 1.36 7.73
1 1' 134.72 22.55 40.59 0.56 94.13 52.59 4.97 8.94 61.52 -2.87 -0.05 -0.05 1.00 -6.74 -0.03 1.00 1.02 62.72
2 2' 99.01 20.73 37.31 0.54 61.70 33.47 5.49 9.88 43.35 -8.63 -0.15 -0.15 0.99 -14.85 -0.08 1.01 1.07 46.27
3 3' 56.55 17.04 30.67 0.55 25.89 14.12 5.02 9.04 23.16 -14.48 -0.26 -0.25 0.97 -14.14 -0.14 1.03 1.13 26.28
4 4' 59.79 11.34 20.41 0.52 39.37 20.50 5.42 9.76 30.26 -20.49 -0.37 -0.35 0.94 -20.93 -0.19 1.07 1.22 36.86
5 5' 28.91 3.43 6.17 0.62 22.74 14.21 0.00 0.00 14.21 -26.74 -0.50 -0.45 0.89 -13.01 -0.31 1.12 1.40 19.89
6 6' 2.31 0.00 0.00 0.62 2.31 1.44 0.00 0.00 1.44 -33.37 -0.66 -0.55 0.84 -1.27 -0.41 1.20 1.62 2.34














S= 794.72

S= 1414.83


















F= 1.78





















b jednego paska = 1.8





































F ze szwedzkiej 1.57

















Sheet 2: Szwedzka


METODA SZWEDZKA
































Numer paska Qsr [kN] sina a cosa Qsr*sina f' [o] tg j c' L*1 [m^2] c'*L*1 [kN] u [kPa] u*L*1 Qsr*cosa Qsr*cosa - u*L*1 (Qsr*cosa - u*L*1)*tg j'

















1 1 210.68 0.050 2.87 0.999 10.53 30.61 0.59 3.21 1.80 5.78 22.55 40.54 210.42 169.88 100.52
2 2 230.09 0.150 8.63 0.989 34.51 31.62 0.62 2.37 1.78 4.21 20.73 36.89 227.48 190.59 117.34
3 3 249.15 0.250 14.48 0.968 62.29 33.04 0.65 1.13 1.74 1.97 17.04 29.69 241.24 211.55 137.59
4 4 257.98 0.350 20.49 0.937 90.29 FaMaZ: wstawiam fi dla paskow które przecinaja podstawa warstwy 33.39 0.66 1.24 1.69 2.10 11.34 19.12 241.67 222.54 146.68
5 5 258.73 0.450 26.74 0.893 116.43 34.68 0.69 0.00 1.61 0.00 3.43 5.51 231.05 225.54 156.05
6 6 252.62 0.550 33.37 0.835 138.94 FaMaZ: wstawiam fi dla paskow które przecinaja podstawa warstwy 33.88 0.67 0.00 1.50 0.00 0 0.00 210.98 210.98 141.65
7 7 231.74 0.650 40.54 0.760 150.63 35.00 0.70 0.00 1.37 0.00 0 0.00 176.11 176.11 123.31
8 8 231.74 0.750 48.59 0.661 173.81 35.00 0.70 0.00 1.19 0.00 0 0.00 153.28 153.28 107.33
9 9 94.71 0.850 58.21 0.527 80.50 35.00 0.70 0.00 0.95 0.00 0 0.00 49.89 49.89 34.93
10 10 8.12 0.950 71.81 0.312 7.71 35.00 0.70 0.00 0.56 0.00 0 0.00 2.53 2.53 1.77
1 1' 134.72 -0.050 -2.87 0.999 -6.74 29.19 0.56 4.97 1.80 8.93 22.55 40.54 134.55 94.01 52.52
2 2' 99.01 -0.150 -8.63 0.989 -14.85 28.48 0.54 5.49 1.78 9.77 20.73 36.89 97.89 61.00 33.09
3 3' 56.55 -0.250 -14.48 0.968 -14.14 28.61 0.55 5.02 1.74 8.76 17.04 29.69 54.76 25.07 13.67
4 4' 59.79 -0.350 -20.49 0.937 -20.93 FaMaZ: wstawiam fi dla paskow które przecinaja podstawa warstwy 27.50 0.52 5.42 1.69 9.14 11.34 19.12 56.01 36.88 19.20
5 5' 28.91 -0.450 -26.74 0.893 -13.01 32.00 0.62 0.00 1.61 0.00 3.43 5.51 25.82 20.31 12.69
6 6' 2.31 -0.550 -33.37 0.835 -1.27 32.00 0.62 0.00 1.50 0.00 0 0.00 1.93 1.93 1.20





S= 794.72


S= 50.67


S= 1199.55















F= 1.57


Pole



Pole



gama




Numer paska Nasyp Ia Ib II
Nasyp Ia Ib II
Nasyp Ia Ib II

1 62696.4882 9000 23400 17187.9648
6.27 0.90 2.34 1.72
18 18.5 20 20

2 77114.6538 9000 23400 13914.9001
7.71 0.90 2.34 1.39






3 95096.4882 9000 23400 7265.086
9.51 0.90 2.34 0.73






4 111296.4882 9000 20172.69 327.0621
11.13 0.90 2.02 0.03
b jednego paska = 1.8



5 127496.4882 8890.6749 6394.0313 0
12.75 0.89 0.64 0.00






6 139062.7947 1246.1255 0 0
13.91 0.12 0.00 0.00






7 128745.265 0 0 0
12.87 0.00 0.00 0.00






8 128745.265 0 0 0
12.87 0.00 0.00 0.00






9 52614.1629 0 0 0
5.26 0.00 0.00 0.00






10 4510.0775 0 0 0
0.45 0.00 0.00 0.00






1' 46496.4882 9000 0 17187.9648
4.65 0.90 0.00 1.72






2' 30296.4882 9000 0 13914.9001
3.03 0.90 0.00 1.39






3' 14096.4882 9000 0 7265.086
1.41 0.90 0.00 0.73






4' 1109.8108 9000 20172.69 396.9383
0.11 0.90 2.02 0.04






5' 0 9082.0644 6053.7746 0
0.00 0.91 0.61 0.00






6' 0 1246.1255 0 0
0.00 0.12 0.00 0.00

























































Uśredniam F dla pasków 6,4,4'







Zw dla pasków pod wodą























Dla paska 6

Dla paska 4

Dla paska 4'


















nr paska zw zw [m]




l1= 115.8423
l1= 137.8835
l1= 137.8835
1 225.4887 22.55




l2= 71.7304
l2= 54.3642
l2= 50.4644
2 207.305 20.73




L= 187.5727
L= 192.2477
L= 188.3479
3 170.3616 17.04













4 113.4089 11.34




j1= 35
F1= 32
F1= 32
5 34.2865 3.43




j2= 32
F2= 12
F2= 12
1' 225.4887 22.55







c1= 0
c1= 0
2' 207.305 20.73







c2= 21
c2= 21
3' 170.3616 17.04













4' 113.4089 11.34




jśr= 33.88
Fśr= 26.94
Fśr= 27.22
5' 34.2865 3.43




cśr= 0
csr= 5.94
cśr= 5.63

























j nasypu= 35














j I = 32














j II = 12































c nasypu = 0














c I = 0














c II = 21














Sheet 3: Met tangensów

METODA TANGENSÓW










j = 42



Tgj = 0.900









Nachylenie 1:1 1:1,5 1:2 1:2,5 1:3
a 45 33.69 26.56 21.8 18.43
Tga 1.000 0.667 0.500 0.400 0.333
F = 0.90 1.35 1.80 2.25 2.70

Wyszukiwarka

Podobne podstrony:
18, Wyznaczanie ciepła właściwego cieczy w stałym ciśnieniu metodą elektryczną, Artur Grudziński
2 Metoda Bishopa Artur
1 Metoda Szwedzka Artur

więcej podobnych podstron