c
c
Contents
J
!" # $%J%&
' () *
+%"' ,
) - ./,
0 )"' 1,
22.( 34"5672 /
) ' /
7"72 ,8/
! % 2 /9
7" :;4<; =:;2/,9
%2"9
46)2">9
:;4# 2&8
46 " ":4>8
46 " ":4>8
46 " " :4>8
7"2:;4%:;' 8
J"2:4J>-881
72 :;48111
72 6"1
0 ?
72 ":;41/*1&?
7 ":;4" %11?
5 :;4%46; ??
7"@ %(24*?
2 :;4*,?
J
eal Gas Non-Point Particles
J J
i u
i `
i
!
Problem in Rotating Atoms (02:30
Energy of a rotating system
`
m m " #
$%
"
&'
#
`
(
$
$
%
' *
&
**
A&3&26!3
&
)
*B
*
$
Convert rotational momentum to angular momentum
) $J
* +
$$ , $-
. "J#
w
/
ß
J" #". #
<= % 2 2<=. "
u
etermine the angular momentum (momenta conjugate to (Ʌ, J, r)
. /
"( 0
$
$
12 12
' 3 " #
Energy of a single molecule
$4
Partition Function for a Single Molecule (13:30
Ô
c " #$
532 "$$
# 6 )$
"$4# 6 3
$
!
"
`
%
7
`
$8
#$
!
%&$
!
9
"!
%
'(
%
'(
)
*
&
!
:
%(`
J
"
#
;<
$
+
,-
.
,
6$ $ '
log of Z , the Partition Function
$%
t
/ t - t # /
,
t
/
,
t
012345243
'"=>J#"J0
#
$
Energy of Molecular Gas Ȃ an a Para ox (23:25
$%%
67
6
689*
6
+
%
' &('`'` !
$
Ô
6!$
J ; < ?
) '`
"J0
#
`
! $-
" #$J &u
$ $
D
uantum Mechanical Formulation (28:00
`
! * $" #
Ô $
$4
"#
2:
*
$%
:
`
;< ">7
#$
5 6$ $ "$4# $%
$%&
;
:
6$ $
%(
$@ ! $
Approximate Solutions; High or Low Temperature
Ô: ! /
!
$%&
;
:
< ;
=
A 0`
Ô : !
!
$%&
;
:
"
>
0
+
%
'+
'??
:
0%A:
%
'
'??
:
0
70&
3
i
;<
i J" 0
# :
i J ! !
Calculate Mo ifie Partition Function an Energy
$%
t
%
:
$%
@
6 ABC
6
/%
:
:
B :
3
i
i '
i
! %":
:
%
(J#
The Temperature Crossover Point (47:00
`
! /
C
*
0%
"`0%(:#
;<
:
$%
=:
:"0%(` #
$%4
+
:
D`A
!
@ )E "F 0`#
+
+
D4
:
`G
! $H
!
u
iscussion on ifferent molecules, ifferent temperatures (50:00
" #
Thermo ynamics of a Black Hole Dzki s versionsdz (BekensteinEntropy
(54:20
1/ I ` @F,/
$
J + @F, 3
$%
Q
@EFG
Q
H
F
%$
3+)
$
@F,
A
one bit of information, a photon.
`
F $
How Many bits of information in a photon?
,
@F,$` ") #*
*$
J *
) F * 3ummm m
`
)
/ $
Black Hole Premise (to just accept):
i Ô@F,
" @,#
i Ô c )5 @, 7
i @, $
- F
< )/
ummm m
ò Q
< c )5
How much energy oes the BH gain?
`
3 J
<5
c
$%8
I
J
:F
K
:F
L
M
J05
c
How much oes the mass of a BH increase?
:F
K
:F
L
M
@,
$
:F
K
:F
L
M
:
LF
" 20
#
How much oes the Ra ius of a BH increase?
"$%#Q
H
F
"$#
:
LF
Q
H
F
'
:
LF
$%
QQ
8N: 0
O * Q
P
@,
3
i
i 5K5. K5
$ Ô
i ! / "=L#$ *
`
5,c
8N: 0
O *
)( @,
The Entropy of a Black Hole, Bekenstein Formula
' $ $M
3
8N: 0
O *Q
$
Q P 80
N:
O * '
@F
i @F,2 )
i M
: $
i
:H
R
S
>T
UU
6FÔ
% "%3
J
s the Entropy of a B.H. Jnfinte? Ȃ No (77:00
`
2 @F,$J F
!2 N $` I
i I @, 7
i I @, $
Temperature of a Black Hole (78:28
J )"
83%8
#
@F,$
`
$` * 3" 7
7 7 #$
`
"20`c#
$J"$%8# 2 "c0%#
$%8
I
J
:F
K
:F
L
M
J05
c
V J
:F
K
:F
L
M
W ??VQ >
"20`c#
$&
XY
X
:F
L
M
:F
H
`
/ $
" 8=#
Temperature ecreases with energy
$
P
+
Y
O
c ! $Ô
7 F $
P !
i P"
7
i Ô /
i
i F
i
`
@F,
P/ $@ @$,$
$
D
uestions
Temperature as seen by an observer far from the Black Hole (85:18)
Ô
$
' F " #/
$- $`
". )# $Ô
$`
$-
! $`!"
To an outsi e observer the Black Hole only has a surface, no interior (88:00
Ô
. )$`. " #
. )$M
@F, @F,$
u
`
2 @F,@F
Luminosity of a Black Hole, Hawking Ra iation (93:00
+
" 3
:000%#
.
D
c @ ) $
" F0%#
'Ô
P5
7`
P?>Z[\]^_`W? ?abc\P?>Zdcefcb\g_bc
%
\h]?\t` ?
dcefcb\g_bc?P?>Zi\``?
P
P
+
`
@F,/
F F $` ,F
$
Thermal Equilibrium, Specific Heat (100:00
`
F *$J /
" #$
/ $M.
/ *$
Entropy in universe is ominate by Black Holes (104:00
Ô
!$%
!$%
%
@F,F
#$`) A%
%
F F$