38704326 SM05 Non Point Particles Black Hole Thermodynamics

background image

c

c

Contents

J

!" # $%J%&

' () *

+%"' ,

) - ./,

0 )"' 1,

22.( 34"5672 /

) ' /

7"72 ,8/

! % 2 /9

7" :;4<; =:;2/,9

%2"9

46)2">9

:;4# 2&8

46 " ":4>8

46 " ":4>8

46 " " :4>8

7"2:;4%:;' 8

J"2:4J>-881

72 :;48111

72 6"1

0 ?

72 ":;41/*1&?

background image

7 ":;4" %11?

5 :;4%46; ??

7"@ %(24*?

2 :;4*,?



J

eal Gas Non-Point Particles

J J

i„ u

i„ `

!

Problem in Rotating Atoms (02:30


Energy of a rotating system

`

m m " #

$%

†

"

&'

#


`

(

$

†

$

%

' *
&

**

A&3&26!3
&

)

*B

*

$

background image

Convert rotational momentum to angular momentum

) $J

* +
$$ , $-
. "J#

w


/

ß

J" #". #

<= % 2 2<=. "

u

etermine the angular momentum (momenta conjugate to (Ʌ, J, r)

. /
"( 0

$

$

12 12

' 3 " #

Energy of a single molecule

$4

†

Partition Function for a Single Molecule (13:30

Ô

c " #$

532 "$$
# 6 )$

"$4# 6 3

$

!

"

`

%

7


`

$8

#$

!

%&$

!

9

"!

%

'(

%

'(

)

*

&

!

:

%(`

J

"

#

;<

background image

$

+

,-

.

,

6$ $ '

log of Z , the Partition Function

$%

t

/ t - t # /

,

t

/

,

t

012345243


'"=>J#"J0

#

$

Energy of Molecular Gas Ȃ an a Para ox (23:25

$%%

†

67
6

689*

6


+

%


' &('`'` !
$
Ô

6!$

J ; < ?
) '`

"J0

#


`

! $-

" #$J &u
$ $

D

uantum Mechanical Formulation (28:00

`

! * $" #


Ô $

$4

†

"#


2:

*

$%

†

:

`

;< ">7

#$
5 6$ $ "$4# $%

$%&

;

:

6$ $

%(

$@ ! $

background image

Approximate Solutions; High or Low Temperature


Ô: ! /
!

$%&

;

:

< ;

=

A 0`


Ô : !
!

$%&

;

:

"

>

0

+

%

'+

'??

:

0%A:

%

'

'??

:

0

70&

3

;<

i„ J" 0

# :

i„ J ! !

Calculate Mo ifie Partition Function an Energy

$%

t

%

:

$%

†

@

6 ABC

6

/%

:

:

B :

3

i„ '

! %":

:

%

(J#

The Temperature Crossover Point (47:00

`

! /

C

*

‚

0%

"`0%(:#
;<

:

$%

=:

:"0%(` #

background image

$%4

+

:

D`A

!

@ )E "F 0`#

+

+

D4

:


`G
! $H

!

u

iscussion on ifferent molecules, ifferent temperatures (50:00

" #

Thermo ynamics of a Black Hole Dzki s versionsdz (BekensteinEntropy
(54:20

1/ I ` @F,/
$

J + @F, 3

$%

Q

@EFG

Q

H

F

%$

„ 3+)

$

„ @F,

A

one bit of information, a photon.

`

F $

How Many bits of information in a photon?

,
@F,$` ") #*
*$

J *

) F * 3ummm m


`

)

/ $

background image

Black Hole Premise (to just accept):

i„ Ô@F,

" @,#

i„ Ô c )5 @, 7

i„ @, $


- F

< )/

ummm m

ò Q

< c )5

How much energy oes the BH gain?

`

3 J

<5

c

$%8

†

I

J

:F

K

:F
L

M

J05

c

How much oes the mass of a BH increase?

“

:F

K

:F
L

M

@,

$

“

:F

K

:F
L

M

:

LF

" 20

#

How much oes the Ra ius of a BH increase?

"$%#Q

H

F

"$#“

:

LF

“Q

H

F

'

:

LF


$%

Q“Q

8N: 0

O * “Q

P “

@,

3

i„ 5K5. K5

$ Ô

i„ ! / "=L#$ *

`

5,c

8N: 0

O *

)( @,

The Entropy of a Black Hole, Bekenstein Formula

' $ $M
3

8N: 0

O *Q


$

Q P 80

N:

O * '

@F

i„ @F,2 )

i„ M

: $

:H

R

S

>T

UU

6FÔ

background image

% "%3

J

s the Entropy of a B.H. Jnfinte? Ȃ No (77:00

`

2 @F,$J F

!2 N $` I

i„ I @, 7

i„ I @, $

Temperature of a Black Hole (78:28

J )"

83%8

#

@F,$

`

$` * 3" 7

7 7 #$

`

"‚20`‚c#

$J"$%8# ‚2 "‚c0%#
$%8

†

I

J

:F

K

:F
L

M

J05

c

V† J

:F

K

:F
L

M

W ??VQ >

"‚20`‚c#

$&

XY

X

:F
L

M

:F

H

`

/ $

" 8=#

Temperature ecreases with energy

$

P

+

Y

O

c ! $Ô
7 F $
P !

i„ P"

7

i„ Ô /

i„ F


`

@F,

P/ $@ @$,$

$

background image

D

uestions

Temperature as seen by an observer far from the Black Hole (85:18)

Ô

$

' F " #/
$- $`

". )# $Ô

$`
$-
! $`!"

To an outsi e observer the Black Hole only has a surface, no interior (88:00

Ô

. )$`. " #

. )$M
@F, @F,$

u

`

2 @F,@F

Luminosity of a Black Hole, Hawking Ra iation (93:00

+

" 3

:000%#


.

D

c @ ) $
" F0%#


P5

7`

P?>Z[\]^_`W? ?abc\P?>Zdcefcb\g_bc

%

\h]?\t` ?

dcefcb\g_bc?P?>Zi\``?

P

P

+


`

@F,/

F F $` ,F
$

Thermal Equilibrium, Specific Heat (100:00

`

F *$J /

" #$

/ $M.
/ *$

Entropy in universe is ominate by Black Holes (104:00

Ô

!$%

!$%

%

@F,F

#$`) A%

%

background image


F F$


Wyszukiwarka

Podobne podstrony:
38704322 SM04 Ideal Gas Point Particles Pressure Free Energy Calculations
Entropy, Area And Black Hole Pairs
The Black Hole Alan Dean Foster
Pressure Point Charts Black Arts Society
2010 Supermassive black hole growth over cosmic time Active galaxy demography physics and ecology fr
Foster, Alan Dean The Black Hole
Ahmad S A B Fermion QFT in black hole spacetimes (phd thesis, VA, 1997)(100s)
Foster, Alan Dean The Black Hole
Black Hole Fact Sheet
karty płatnicze (power point)
elastyczność popytu (power point)
kryptologia w bankowości (power point)

więcej podobnych podstron