SAT II Math Formula Reference

background image

SAT II Math Formula Reference

MATH LEVEL IIC

1.3ver

CHAPTER 1

INTRODUCTION TO FUNCTIONS

(f+g)(x)=f(x)+g(x)
(f
·g)(x)=f(x)·g(x)
(f/g)(x)=f(x)/g(x)
(f

g)(x)=f(x)

g(x)=f(g(x))

CHAPTER 2

POLYNOMIAL FUNCTIONS

Linear Functions

Distance=

2

2

1

2

1

2

(x -x ) +(y -y )

Distance=

1

1

2

2

Ax

By

C

A

B

Tan

=

1

2

1

2

1

m

m

m m

mis the slope of l.

2

4

2

b

b

ac

x

a

 

Sumof zeros (roots)=

b
a

Product of zeros (roots)=

c

a

CHAPTER 3

TRIGONOMETRIC FUNCTIONS

Graphs:

(

)

is the amplitude

is the period of the graph

C

is the phase shift

B

y

A f Bx C

A

f

B

 





background image

sin

csc

1

cos

sec

1

tan

cot

1

sin

tan

cos

cos

cot

sin

Quadrant

I

II

III

IV

Function:
sin,csc

+

+

-

-

cos,sec

+

-

-

+

tan,cot

+

-

+

-

Arcs and Angles

2

1
2

s r

A

r

Special Angles

0

2

3

2

2

sine

0

1

0

-1

0

cosine

1

0

-1

0

1

tangent

0

und

0

und

0

cotangent

und

0

und

0

und

secant

1

und

-1

und

1

cosecant

und

1

und

-1

und

*und: means that the function is undefined because the definition of the function necessitates division by
zero.

30

6

or

45

4

or

60

3

or

sine

1
2

2

2

3

2

cosine

3

2

2

2

1
2

tangent

3

3

1

3

cotangent

3

1

3

2

background image

Useful Links:

SAT Online Practice Tests:

http://www.cracksat.net/tests/

SAT Subjects Tests:

http://www.cracksat.net/sat2/

SAT Downloads:

http://www.cracksat.net/sat-downloads/

For more SAT information, please visit

http://www.cracksat.net

SAT Downloads:

SAT real tests download:

http://www.cracksat.net/sat-downloads/sat-real-tests.html

SAT official guide tests download:

http://www.cracksat.net/sat-downloads/sat-official-guide-tests.html

SAT online course tests download:

http://www.cracksat.net/sat-downloads/sat-online-course-tests.html

SAT subject tests download:

http://www.cracksat.net/sat-downloads/sat-subject-tests.html

PSAT real tests download:

http://www.cracksat.net/psat/download/

1000+ College Admission Essay Samples:

http://www.cracksat.net/college-admission/essays/

background image

secant

2 3

3

2

2

cosecant

2

2

2 3

3

Formulas:

2

2

2

2

2

2

1.sin

cos

1

2.tan

1 sec

3.cot

1 csc

4.sin(

) sin

cos

cos

sin

5.sin(

) sin

cos

cos

sin

6.cos(

) cos

cos

sin

sin

7.cos(

) cos

cos

sin

sin

tan

tan

8.tan(

)

1 tan

tan

9.ta

x

x

x

x

x

x

A B

A

B

A

B

A B

A

B

A

B

A B

A

B

A

B

A B

A

B

A

B

A

B

A B

A

B

 

 

tan

tan

n(

)

1 tan

tan

A

B

A B

A

B

2

2

2

2

2

10.sin 2

2sin cos

11.cos 2

cos

sin

12.cos 2

2cos

1

13.cos 2

1 2sin

2 tan

14.tan 2

1 tan

1

1 cos

15.sin

2

2

1

1 cos

16.cos

2

2

1

1 cos

17.tan

2

1 cos

1 cos

18.

sin
sin

19.

1 cos

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A
A

A

 

 

 

 

*The correct sign for Formulas 15 through 17is determined by the quadrant in which angle

1
2

A

lies.

Triangles

Law of sines:

sin

sin

sin

A

B

C

a

b

c

background image

Law of cosines:

2

2

2

2

2

2

2

2

2

2 cos
2 cos
2

cos

a

b

c

bc

A

b

a

c

ac

B

c

a

b

ab

C

Area of a

:

1

sin

2
1

sin

2
1

sin

2

Area

bc

A

Area

ac

B

Area

ab

C

CHAPTER 4

MISCELLANEOUS RELATIONS AND FUNCTIONS

The general quadratic equation

2

2

0

Ax

Bxy Cy

Dx Ey F

 

If

2

4

0

B

AC

and

A C

, the graph is a circle.

If

2

4

0

B

AC

and

A C

, the graph is an ellipse.

If

2

4

0

B

AC

, the graph is a parabola.

If

2

4

0

B

AC

, the graph is a hyperbola.

Circle:

2

2

2

(

)

(

)

x h

y k

r

Ellipse:

if C>A,

2

2

2

2

(

)

(

)

1

x h

y k

a

b

, transverse axis horizontal

if C<A,

2

2

2

2

(

)

(

)

1

x h

y k

b

a

, transverse axis vertical, where

2

2

2

a

b

c

Vertices:

a

units along major axis fromcenter

Foci:

c

units along major axis fromcenter

Length=2b

Eccentricity=

c

a

<1

Length of latus rectum=

2

2b

a

Parabola:

if C=0,

2

(

)

4 (

)

x h

p y k

opens up and down---axis of symmetry is vertical

background image

if A=0,

2

(

)

4 (

)

y k

p x h

opens to the side---axis of symmetry is horizontal

Equation of axis of symmetry:
x=h if vertical
y=k if horizontal
Focus: p units along the axis of symmetry from vertex
Equation of directrix:
y=-p if axis of symmetry is vertical
x=-p if axis of symmetry is horizontal

Eccentricity=

c

a

=1

Length of latus rectum=4p
Hyperbola:

2

2

2

2

(

)

(

)

1

x h

y k

a

b

, transverse axis horizontal

2

2

2

2

(

)

(

)

1

y k

x h

a

b

, transverse axis vertical, where

2

2

2

c

a

b

Vertices:

a

units along the transverse axis fromcenter

Foci:

c

units along the transverse fromcenter

Length of latus rectum=

2

2b

a

Eccentricity=

c

a

>1

the slopes of the asymptotes are

a
b

(vertical)or

b
a

(horizontal).

Exponential and Logarithmic Functions

background image

0

log

1

1

( )

( )

log (

) log

log

log 1 0

log

log

log

log

1

log (

)

log

log

log

log

b

a

b

a b

a

a b

b

a

a

a b

ab

a

a

a

b

b

b

b

p

b

b

b

b

x

b

b

a

b

a

x

x

x

x

x

x

x

x

x

x

x

x

y

xy

p q

p

q

b

p

p

p

q

q

b

p

x

p

p

p

b

 

 

 

 

Greatest Integer Functions:

 

, where i is an interger and

1

x

i

i x i

  

Polar Coordinates:

2

2

2

cos

sin

x r

y r

x

y

r

 

 

De Moivre’s Throrem:

If

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

1

2

1

2

1

2

1

2

1

1

1

2

1

2

2

2

2

2

1/

1/

(cos

sin )

(cos

sin )

:

1.

[cos(

)

sin(

)]

2.

[cos(

)

sin(

)]

3.

(cos

sin

)

2

4.

(cos

n

n

n

n

n

z

x

y i r

i

r cis

and

z

x

y i r

i

r cis

z z

r r

i

z

r

i

z

r

z

r

n

i

n

r cisn

k

z

r

 

 

 

 

 

 

 

  

 

 

 

1/

2

2

sin

)

where k is an integer taking on values from 0 to n-1.

n

k

k

i

r cis

n

n

n

CHAPTER 5

MISCELLANEOUS TOPICS

!

(

1)(

2)...3 2 1

n

n n

n

 

Permutations:

background image

Circular permutation (e.g., around a table) of n elements=

(

1)!

n

Circular permutation (e.g., beads on a bracelet) of n elements=

(

1)!

2

n

Permutations of n elements with a repetitions and with b repetitions=

!

! !

n

a b

!

!

n r

n

P

n r

the product of the largest r factors of n!

!

!

n r

n

P

r

r

r

 

 

 

The number of combinations of n things taken r at a time is denoted by

n

r

C

or C(n,r) or

n
r

 

 

 

.

n

n

r

n r

  

  

  

Binomial Theorem:

1

n r r

r

n

r

T

C a b

Probability:

Independent events:

(

)

( )

( )

P A B

P A

P B

Mutually exclusive events:

(

) 0

(

)

( )

( )

P A B

and P A B

P A

P B

Sequences and Series
In general, an arithmetic sequence is denoted by

1 1

1

1

1

,

,

2 ,

3 ......

(

1)

t t

d t

d t

d

t

n

d

 

1

1

(

)

2

[2

(

1) ]

2

n

n

n

n

S

t

t

or

n

S

t

n

d

 

In general, a geometric sequence is denoted by

2

3

1

1

1

1

1

1

, ,

,

,...,

n

t t r t r t r

t r

1

(1

)

1

n

n

t

r

S

r

1

lim

1

n

n

t

S

r



background image

Geometry and Vectors

If

1

2

( , )

V v v



and

1

2

( , )

U u u



,

1

1

2

2

(

,

)

U V

u

v u

v

 



2

2

1

2

( )

( )

V

v

v



1 1

2 2

V U v u

v u

 

 

Two vectors are perpendicular if and only if

0

V U

 

 

Logic:

(

)

(

)

(

),

,

'

If

is true, then '

' is also true.

conjunction

A B

disjunction

A B

implication

A

B negation A B

A

B

B

A

Determinates:

a c

ad bc

b d

,

ax by c

If

dx ey

f

c b

a c

f e

d f

x

y

a b

a b

d e

d e

Geometry:
Distance between two points with coordinates

1

1

1

2

2

2

2

2

2

1

2

1

2

1

2

( , , )

, ,

(

)

(

)

(

)

x y z and x y z

x

x

y

y

z

z

The distance between a point and a plane:

Distance=

1

1

1

2

2

2

Ax

By

Cz

D

A

B

C

Triange:
Heron’s formular:

A=

(

)(

)(

); , , are the three sides of the triangle,

1

S= (

)

2

s s a s b s c a b c

a b c

 

Rhombus:

background image

Area=bh=

1 2

1

;

,

,

2

d d b base h height d

diagonal

Cylinder

Volume=

2

r h

Later surface area=

2 rh

Total surface area=

2

2

2

rh

r

Cone:
The volume of the cone:

2

1
3

V

r h

Later surface area

2

2

r r

h

1
2

cl

Total surface area

2

2

2

r r

h

r

Sphere

Volume=

3

4
3

r

Surface area=

2

4 r


Wyszukiwarka

Podobne podstrony:
SAT II Math Level 2 Study Guide
SAT Subject Physics Formula Reference
(ebook pdf) Matlab C++ Math Library Reference v2 1
Math Planimetry Formulas
MGLab Formularz II 3
MGLab Formularz II 2
MGLab Formularz II 5 id 297630 Nieznany
satka(1), geodezja, ROK II, Geo Sat
adg formularz5, Inżynieria środowiska, II semestr, Ch.a.i
MGLab Formularz II 4 id 297629 Nieznany
adg formularz4, Inżynieria środowiska, II semestr, Ch.a.i
Formularz Pp2, OŚ, sem II 1 SOWiG, Systemy Finansowania Ochrony Środowiska w Polsce, Projekt SFOŚwP
formularz zgloszeniowy na 7 rajd energetyka, Politechnika Wrocławska Energetyka, II semestr
adg formularz2, Inżynieria środowiska, II semestr, Ch.a.i
Formularz Pp1, OŚ, sem II 1 SOWiG, Systemy Finansowania Ochrony Środowiska w Polsce, Projekt SFOŚwP
MGLab Formularz II-2
Math Main Formulas
MGLab Formularz II-1
Math Stereometry Formulas

więcej podobnych podstron