c
O
J
The Boltzman Distribution (01:00 ............................................................................................................ 2
The Two Lagrangange Multiplier Conditions......................................................................................... 2
How many distinct configurations (10:00 ............................................................................................. 2
Approximation when N becomes large (24:00 ...................................................................................... 3
Maximize using Lagrange Multipliers (36:00......................................................................................... 3
Giving the Boltzmann distribution P(i)=e
-(1+ɲ)
e
-ɴEi
.................................................................................. 4
Set the Lagrange Multipliers (ɲ ɴ) to Satisfy Constraints ...................................................................... 4
Why is T = 1/ɴ ? Susskind note 2.3 ....................................................................................................... 4
(ɲ ) is The Partition Function
................................................................................... 5
(ɴ temperature) is a function of the average energy......................................................................... 5
Solving for the Lagrange Multipliers Susskind notes 2.1 ....................................................................... 5
The Two Basic Formulas (59:00 ................................................................................................................ 6
The Partition Function Z(ɴ)=ɇ e
-ɴEi
........................................................................................................ 6
Temperature ʹEnergy RelaƟonship E = эlog Z(ɴ)/эɴ .......................................................................... 6
Defintion of Helmholtz Free Energy ( A = -T log Z = -log Z / ɴ ) .................................................................. 6
Helmholtz Free Energy Susskind notes 2.2 ........................................................................................... 6
Relationship between Helmholtz Free Energy and Entropy .................................................................. 7
Entropy in terms of log Z (71:00 ........................................................................................................... 7
Brief Theory of Flucuations (72:00 ........................................................................................................... 8
Variance in Energy ............................................................................................................................... 8
The variance in energy is the 2
nd
derivative of logX wrt ɴ (84:00 ....................................................... 9
Fluctuations Susskind notes 3 .............................................................................................................. 9
Standard Definitions using Boltzman Constants (95:00 .......................................................................... 10
a
â
÷ ÷
a
a J
Ô
O
O
O
®
[
â
®
^
O
m
!
®
!
"
#
"
! O
O
O
O
"
#$#%&
O $
' ® m
O
' ®
0
%
(
)
%
*+, *+, -
%
*+,
./0 - - ® *+, -
./0 - - ® *+, 1 2
3
./0 - - ® *+, 1 4
#
&
*+,
./0 - ® *+,
#
#" " ÷"
./0 - ® *+,®®
%" "
./0 - ®® *+, ® - ®*+,
#
'
*+,
- ® *+, ®
^ ^
!
O
%^
^ #" "
#" O#
"
â
â ÷ Ô
(#" )(#
" )
*
- ®*+, ® - 5 ® - 6 ®
+
- ®® *+, ® - 5® - 6®
"
â $
, $
i
" "
Y
"
" " " "
" "
i O
i
-
"
"
" #$%
&'($
&)*
® (
)®
(
)7"
!
Ô
(
®
8
O&
®
9
:;<!
8
8
(
)7"
!
c
()$ cJ
$ *$
.
+ a%,)-c. /
O[
&
O
Ô
/
û
-û
7
*+, =>
O
û
?û 1 û? -
@® 8
7
- *+, = û?
0O 0
û
?û
O
&
%
($a # 0
!#"
® m
8
(
)7"
!
8
(
)7"
!
1
O
(
)7"
!
= A®
(
)®
"! &$
"!
%
)$ "
!#"
8
(
)7"
!
2
B
B7
(
)7"
!
- (
)7"
!
C (
)7"
!
-
"
!
B
B7
(
)7"
!
-
8
B
B7
(
)7"
!
-
8
B
B7
(
)7"
!
3
(
)7"
!
-
8®7
B8®7
B7
4 "
!
1
&
-
B 8®7
B7
c
" c. /
O% Ô
%
= (
)7"
!
O*
®
8
(
)7"
!
Ô
(
)7"
!
-
7
(
)7"
!
-
8
7
= -
B 8
B7
O+
Ô
OOO
!
%
a
a 0 12
a
# 0 3)$%4
&)*
O
A® (
)7"
!
"!
a
5*6 *A%7 3)$,7)
&
-
B 8®7
B7
2
O
0*0%&a 3%& 3,)$
'
õ
-
8
7
-? *+, =
O
O
0*c. /
OOO !
0
-D *+,
-
8
(
)7"
!
®
6 1 *+, = 6 1 *+, =
0 O $
-6® - õ
õ
- ?
O
O
ûõ
û - ?û - û?
0
ûõ
-û?
O
%
6 O
0**
'
õ
-
8
7
-? *+, =
O
&
-
B 8®7
B7
'
- ® *+, ®
'
"
®
9
:;<!
8
8
(
)7"
!
-
8
(
)7"
!
®-6 - *+, =
*
8
(
)7"
!
®6 1 *+, =
%* $
8
(
)7"
!
6 1 *+, =
8
(
)7"
!
4
8
(
)7"
!
6 6
O
" O
(
)7"
!
= A®
+
6 1 *+, =
'
6® - õ
O
? - õ
1
* 38
0 & '
'
õ
-
8
7
O
&
-
B 8®7
B7
6® - õ 6
8
7
- 6
B 8®7
B7
O
*+, = - 6
B 8®7
B7
a 0 8
â 5 5
OO
#®®
-
E FGHI®
- ® 1
E
#®
- 1
E
#5 5
2
#
E #E #
O
#®®
-
E #®
-
E
O
#
E - #E
*
0& 5
O
#E -
B 8®7
B7
-
8
B8
B7
/
#5
O
E
®
8
(
)7"
!
"
O
O
O&
#
E
8
B
8
B7
/ O OO&
O'
8
B
8
B7
- J
8
B8
B7
K
B
8
B7
B
B7
J
B 8
B7
K
-
B
B7
J
8
B8
B7
K
-
8
B8
B7
B8
B7
1
8
B
8
B7
a
"
"" 9):
O'
#
E - #E
B
8
B7
" O
B 8
B7
-
O*
#
E - #E
®
-
B"
B7
06
O
®
-
B"
B7
-
"
@
@
7
?
"
@
[J ÷ J÷
O/
O*
®
-
B"
B7
-
"
@
@
7
?
"
@
L ?
O*
?ML
O$
, O*
0 c.
!
%
%
ââ
-
|
- ®NO
®
|
O - |O
O
|
O
!
|®
O
P
®
®â
Ô
$
|
O -
8
7
=
|
O -
8
7
=
®
|
O - |O
®
m
=
7
= - Q
m
=
7
=R
®
7
*+, = -
7
0
®
?
û
û
?
/J
®
?
LST(H(L
"
@
â
â r
®
U?
L
L
"
@
U m m
)
%â
7
O
%
c
J 21
0$
04
%
0%4
% .