background image

Chin Med J 2008;121(9):832-839 

832 

Original article 

 

Curcumin improves learning and memory ability and its 
neuroprotective mechanism in mice 

 
PAN Rui, QIU Sheng, LU Da-xiang and DONG Jun 
     
Keywords: Alzheimer’s disease; curcumin; apoptosis 
 

Background    Increasing evidence suggests that many neurons may die through apoptosis in Alzheimer’s disease (AD). 
Mitochondrial dysfunction has been implicated in this process of neuronal cell death. One promising approach for 
preventing AD is based upon anti-apoptosis to decrease death of nerve cells. In this study, we observed the memory 
improving properties of curcumin in mice and investigated the neuroprotective effect of curcumin in vitro and in vivo
Methods    The mice were given AlCl

3

 orally and injections of D-galactose intraperitoneally for 90 days to establish the 

AD animal model. From day 45, the curcumin group was treated with curcumin for 45 days. Subsequently, the 
step-through test, neuropathological changes in the hippocampus and the expression of Bax and Bcl-2 were carried out 
to evaluate the effect of curcumin on the AD model mice. In cultured PC12 cells, AlCl

3

 exposure induced apoptosis. The 

MTT assay was used to measure cell viabilities; flow cytometric analysis to survey the rate of cell apoptosis; DNA-binding 
fluorochrome Hoechst 33258 to observe nuclei changes in apoptotic cells and Western blot analysis of Bax, Bcl-2 to 
investigate the mechanisms by which curcumin protects cells from toxicity.   
Results    Curcumin significantly improved the memory ability of AD mice in the step-through test, as indicated by the 
reduced number of step-through errors (P <0.05) and prolonged step-through latency (P <0.05). Curcumin also 
attenuated the neuropathological changes in the hippocampus and inhibited apoptosis accompanied by an increase in 
Bcl-2 level (P <0.05), but the activity of Bax did not change (P >0.05). AlCl

3

 significantly reduced the viability of PC12 

cells (P <0.01). Curcumin increased cell viability in the presence of AlCl

3

  (P <0.01). The rate of apoptosis decreased 

significantly in the curcumin group (P <0.05) when measured by flow cytometric analysis. Curcumin protected cells by 
increasing Bcl-2 level (P <0.05), but the level of Bax did not change (P >0.05).   
Conclusions    This study demonstrates that curcumin improves the memory ability of AD mice and inhibits apoptosis in 
cultured PC12 cells induced by AlCl

3

. Its mechanism may involve enhancing the level of Bcl-2.   

Chin Med J 2008;121(9):832-839 

 

lzheimer’s disease (AD) is a neurodegenerative 
disorder that currently affects nearly 5% of people 

65-year old and over 30% of those 85-year old. It is now 
estimated that there are 18−24 million people suffering 
from AD worldwide, two-thirds of whom are living in 
developed or developing countries, and this number is 
expected to reach 34 million by 2025.

1,2

 AD is 

characterized by the progressive accumulation of amyloid 
beta peptide (Aβ), neurofibrillary tangles (NFTs) and 
hyperphosphorylated microtubule-associated tau protein. 
Many regions involved in memory and learning processes, 
such as the hippocampus and frontal cortex, show neuron 
apoptosis several years before clinical signs appear. 
Today there is no cure for this devastating disease and 
therefore it is of great interest for researchers to find new 
drugs that can hinder the disease process. Drugs currently 
available on the market include different inhibitors of 
acetylcholine esterase and N-methyl D-aspartate 
(NMDA)-receptor antagonist. These drugs improve the 
function of still intact neurons, but do not inhibit the ongoing 
degenerative process leading to neuronal cell death.   
 
 
Curcumin, a biologically active component of turmeric 
(Curcuma longa) is used as a curry spice and herbal 

medicine for the treatment of inflammatory conditions, 
cancer, AIDS and other diseases.

3-5

 Epidemical studies in 

India, where turmeric is used routinely, show that the 
incidence of AD between the ages of 70 and 79 years is 
4.4-fold less than in the USA.

6

 Researchers used the 

transgenic mouse APPSw to investigate the curcumin 
treatment effect. Results show that a low dose of 
curcumin significantly suppressed the inflammatory 
cytokine IL-1 and the astrocytic marker GFAP, reduced 
oxidative damage and plaque burden and decreased the 
amount of insoluble amyloid. Compared to other 

Department of Orthopedics, the First Affiliated Hospital, Medical 
College of Jinan University, Guangzhou, Guangdong 510632, 

China (Pan R) 
Department of Pathophysiology, the Key Lab of State 
Administration of Traditional Chinese Medicine, Medical College 

of Jinan University, Guangzhou, Guangdong 510632, China (Qiu 
S, Lu DX and Dong J)   
Correspondence to: Prof. DONG Jun, Department of 

Pathophysiology, Medical College of Jinan University, Guangzhou,
Guangdong 510632, China (Tel: 86-20-85226129. Fax: 
86-20-85221343. Email:dongjunbox@163.com)   

This work was supported by grants from Guangdong Provincial 
Natural Science Foundation (No. 04010443, 06105246), 
Guangdong Provincial Medical Science Foundation (No. 

A2004327, A2006334) and Guangzhou City Science and 
Technology Plan Foundation (No. 2007J1-C0041). 

background image

Chinese Medical Journal 2008; 121(9):832-839 

833

antioxidant drugs, such as NSAID or ibuprofen, curcumin 
had fewer side effects.

7

 Evidence suggests that metals are 

concentrated in the AD brain and curcumin is a chelator 
which can bind the iron and copper (but not zinc) on beta 
amyloid, which may be one mechanism potentially 
contributing to amyloid reduction.

8

  In vivo, curcumin 

may protect cells from the beta amyloid attack and 
subsequent oxidative stress-induced damage in the 
antioxidant pathway.

9,10

 The findings of our previous 

study prove curcumin can induce cognitive improvement 
by enhancing the cholinergic system and its antioxidant 
activity. The studies on curcumin are incomplete. We may 
further investigate its neuroprotective mechanism. 
 

METHODS 

 
Drugs 
Curcumin (Fluka Corporation, USA), huperzine A 
(Shanghai Fudan Fuhua Pharmacy Ltd, China), 
carboxymethyl cellulose (Guangzhou Chemical Reagent 
Factory, China), Hoechst33258 (Binyuntian 
Bioengineering Institute, China), monoclonal antibody 
against bcl-2 (Santa Cruz Biotechnology, CA, USA), 
monoclonal antibody against Bax (Cell Signaling 
Corporation, USA), monoclonal antibody against reduced 
glyceraldehydes-phosphate dehydrogenase (GAPDH) 
(Chemicon, CA, USA), annexin v-fluorescein 
isothiocyanate (FITC) staining kit (Beijing Biosea 
Biotechnology, China), BCA protein assay kit (Shanghai 
Shenneng Bocai, China), Dulbecco’s modified Eagle’s 
media (DMEM) (Gibco BRL, Grand Island), horse serum 
and fetal bovine serum (Hangzhou Sijiqing 
Biotechnology, China), nerve growth factor (Promega 
Corporation, USA), MTT (imported separated package 
bought from Beijing Probe Company, China) were used 
in the present study. 
 
In vivo study 
AD animal model 
Totally 40 female Kunming mice, weighing from 18 to 22 
g were obtained from the Guangdong Experimental 
Animal Center (certificate No: 0013627). The mice were 
kept in cages with the ambient temperature of (24±2)°C, 
relative humidity of (60±10)%, and in 12-hour light-dark 
cycle. Free access to food in the form of dry pellets and 
water was allowed. The animal experiments were 
performed according to the internationally accepted 
ethical guidelines. 
 
The mice were randomly assigned into four groups: 
control group, AD model group, huperzine A treated 
model group and curcumin treated model group. All mice 
were administrated AlCl

3

 orally (10 mg/kg) and 

intraperitoneal injections of D-galactose (120 mg/kg) 
were given for 90 days to set up the AD animal model; 
except for the control group. From day 45 water insoluble 
curcumin (200 mg/kg) was dissolved in 1% 
carboxymethyl cellulose (CMC) and administrated orally 
for 45 days. In parallel, huperzine A was also dissolved in 

1% CMC and administrated orally for 45 days. Similarly 
1% CMC of equal dosage was given to both the control 
and AD model group. After 90 days of treatment mice 
were tested in the step-through avoidance test.   
 
Step-through avoidance test 
The step-through avoidance test was similar to the test 
described by Zhang et al.

11

   

 
Histopathological analysis 
After the step-through avoidance test, the brains of mice 
were removed right after the left ventricle perfusion. 
Removed brains were then immersed in 4% neutral 
buffered paraformaldehyde for 24 hours. Serial coronal 
paraffin sections were cut at 30 µm thickness for 
hematoxylin and eosin (HE) staining. 
 
Western blot analysis 
Other brains were used for Western blot analysis. The 
brain was rapidly dissected over ice and frozen. Protein 
extraction was done with gentle homogenization in seven 
volumes of cold lyses buffer. The homogenates were 
centrifuged at 10 000–14 000 × g at 4°C for 3 minutes. 
Protein concentrations were determined with the BCA 
protein assay reagent and samples were stored at −80°C 
for use in Western blot analysis. 
 
Seventy micrograms of protein extracts were diluted in 
2×SDS loading buffer and loaded onto a 12% 
SDS-polyacrylamide denaturing gel. After electrophoresis, 
30 minutes at 80 V and 1 hour at 120 V, the gel was 
transferred to nitrocellulose membrane by electrophoretic 
transfer at 200 mA for 2 hours. The membrane was 
washed with TBS for 30 minutes and then incubated in 
TBST (TBS containing 0.1% Tween 20) supplemented 
with 5% non-fat milk for 2 hours to block nonspecific 
protein binding. The membrane was cut according to the 
marker and then incubated with the antibody (1:200 
dilution of the monoclonal Bcl-2 or Bax antibody, or a 
1:800 dilution of the monoclonal GAPDH antibody) over 
night at 4°C. Following washing the membrane 3 times 
with TBST the membranes were then incubated for 1 
hour in horseradish peroxidase linked secondary antibody 
(1:2000). Washed 3 times with TBST and then developed 
with ECL detection reagent. 
 
In vitro study 
Cell culture   
Cultures were maintained in DMEM with 1000 U/ml of 
penicillin G, 100 µg/ml of streptomycin, 10% horse serum 
and 10% fetal bovine serum at 37°C in 5% CO

2

. The 

concentration of cells is 5×10

3

/cm

2

. PC12 cells can be 

induced to differentiate toward sympathetic neurons after 
exposure to nerve growth factor (NGF) 50 ng/ml. We 
used differentiated PC12 cells as our study object. 
 
Apoptosis cell culture and cytotoxicity assay 
In all experiments, AlCl

3

 was employed as a source of 

Al

3+

 to investigate effects on cell morphology and 

background image

Chin Med J 2008;121(9):832-839 

834 

viability. AlCl

3

 was prepared as 100× stock solution (in 

0.9% sodium chloride solution) of different 
concentrations and added in equal volumes to the growth 
medium at a concentration of 10, 100, 500 and 1000 
µmol/L. Control cultures contained an equal volume of 
0.9% sodium chloride solution. Changes of pH due to the 
treatment with AlCl

3

 in culture medium were adjusted to 

7.3±0.2 with NaHCO

3

. Cytotoxicity of AlCl

3

 at various 

concentrations was determined in 96-well collagen- 
coated culture plates by the 3 (4, 5-dimethylthiazolyl-2) 2, 
5-diphenyl tetrazolium bromide (MTT) assay, which is 
widely used for the measurement of cell viability. The 
procedure was done according to the instruction manual.   
 
Water insoluble curcumin was dissolved in cell culture 
grade dimethylsulfoxide (DMSO) and stored in the dark 
at –20°C. All dilutions of curcumin were made in DMEM 
medium and the final concentration of DMSO was 0.1%. 
In order to confirm the effect of curcumin on 
differentiated PC12 cells, curcumin was incubated with 
cells at levels of 20, 40, 80, and 160 µmol/L. 
 
Based on previous study results, AlCl

3

 (1000 µmol/L) 

was chosen to incubate with differentiated PC12 cells. 
After 12 hours of incubation 20, 40 and 80 µmol/L 
curcumin were added to the cells. The MTT assay was 
used to determine which concentration of curcumin might 
protect cells from AlCl

3

 toxicity. 

 
Assessment of nuclear morphology 
Cells were washed in cold PBS twice and fixed in 4% 
formaldehyde at 4°C for 10 minutes. Fixed cells were 
washed and labeled with Hoechst 33258 (5 µg/ml) at 
room temperature in the dark for 10 minutes. Then they 
were viewed on an Olympus inverted research 
microscope using the filter for 360 nm. 
 
Annexin V /PI assay 
The procedure was done according to the instruction 
manual. 
 
Western blot analysis 
Following treatment, cells were washed twice with cold 
phosphate buffered solution (PBS) and protein extracts on 
ice for 30 minutes. After centrifugation a total of thirty 
micrograms of protein extracted from cells after each 
treatment was run in 12% SDS-polyacrylamide gels. The 
procedure was the same as previously described. 
According to the protein content, which was less than 
animal tissue protein, we increased the concentration of 
antibody. 1:100 dilution of the monoclonal Bcl-2 and Bax 
antibody or a 1:400 dilution of the monoclonal GAPDH 
antibody was used, accordingly. The concentration of 
horseradish peroxidase linked secondary antibody was 
1:1000. 
 
Statistical analysis 
Data were expressed as means ± standard error (SE). 
One-way analysis of variance (ANOVA) and Newman 

Keel’s test were used for the tests between two or more 
groups. The Mann-Whitney U test was used for values 
which were not suitable for ANOVA. P values less than 
0.05 were considered significant. All statistical analysis 
was performed using SPSS statistical software package 
version 13.0. 

 

RESULTS 

 

Curcumin improves learning and memory ability in 
the AD model mice 
Performance of the mice in the step-through passive 
avoidance training and testing is shown in Table. During 
the first day of training the number of times the mouse 
entered the dark chamber was significantly increased in 
the model group over the control group (P <0.01). The 
increased number of times was significantly reversed by 
curcumin (P <0.05). On the testing day errors significantly 
increased and step-through latency decreased markedly in 
the model group compared to the control group (P <0.01). 
The shorter step-through latency and increased errors 
were significantly reversed by curcumin and huperzine A 
(P <0.05). There was no significant difference between 
the curcumin group and huperzine A group (P >0.05). 
From the statistics we found that administrating AlCl

3

 

combined with D-galactose for 90 days induced mice 
memory impairment, which mimic AD pathogenetic and 
could be used as an AD animal model. Administration of 
curcumin can significantly improve learning ability. 

 

Table. Effect of curcumin on error times and latency of 

step-through avoidance test in mice 

Testing 

Treatment 
(n=10) 

Training error 

times 

Error times 

Escape latency 

Control 0.90±0.32 

0.20±0.42 

269.30±64.73 

Model  

2.00±0.94

**

 1.60±0.97

**

  153.10±103.41

**

Model + huperzine A 

1.30±0.48

*

 0.60±0.84

#

 247.00±81.38

#

Model + curcumin 

  1.20±0.42

*#

 0.60±0.70

#

 240.10±70.11

#

*

P <0.05, significantly different from control group. 

**

P <0.01, significantly 

different from control group. 

#

P <0.05, significantly different from model group.   

 

Huperzine A is a novel lycopodium alkaloid isolated from 
Chinese herbs. Studies have shown it is a reversible and 
selective acetylcholinesterase inhibitor improving rats’ 
memory ability.

12

 In this study, we used it as a positive 

drug to compare the effect of huperzine A and curcumin. 
Results showed that both of the two drugs induced 
memory improvement in mice. There was no significant 
difference between the two drugs. 
 
HE staining (Figure 1) shows that there were typical 
neuropathological changes in the hippocampus of AD 
model mice. In the control group the neurons were full 
and arranged tightly, the nuclei were light-stained. By 
comparison in the model group mice, the cytoplasm of 
neurons were shrunken, the nuclei were side-moved and 
dark-stained, neurofibrillary degeneration and neuron loss 
were observed in hippocampus. Consecutive administration 
of curcumin significantly attenuated these neuropathological 
changes. The neurons recovered their characteristic shape, 
with prolonged neurofibrillary, the nuclei were light- 

background image

Chinese Medical Journal 2008; 121(9):832-839 

835

 

 
Figure 1. 
Neuropathological changes in hippocampus of AD model mice induced by AlCl

3

 and D-galactose revealed by hematoxylin and 

eosin (HE) staining. A: control group. B: model group. C: curcumin group. D: huperzine A group. 

 
stained and arranged tightly compared to the model 
group. 
 
We next investigated the mechanism by which curcumin 
protects neurons from AlCl

3

 and D-galactose 

neurotoxicity in mice. Changes in the levels of Bcl-2 and 
Bax protein in mitochondria were further assessed to 
determine programmed cell death in this animal system. 
The antibody to Bcl-2/Bax identified a protein band with 
an apparent molecular weight of 27/21 kD. We found that 
administration of AlCl

3

 and D-galactose resulted in Bcl-2 

down-regulation (P <0.05) (Figure 2). The neuroprotective 
effect of curcumin treatment resulted in an increase in the 
anti-apoptosis protein Bcl-2 content (P <0.05). There was 
no significant difference of Bax protein between these 
groups (P >0.05). It appears from our studies that level of 
the apoptosis regulatory protein Bcl-2 increased, and 
triggering signaling led to the initiation and expression of 
apoptosis. Curcumin may have potent anti-apoptosis 
characterized by up-regulating Bcl-2 level.   

 

 

 
Figure 2.
 Analysis of the Bcl-2/Bax obtained from brain tissue 
treated with AlCl

3

 and D-galactose, combined with or without 

drug by Western blot. Lane 1: control group. Lane 2: model 

group. Lane 3: huperzine A treated model group. Lane 4: 
curcumin treated model group. The experiment was repeated 
three times with similar results. 

*

P <0.05, significantly different 

from control group. 

<0.05, significantly different from model 

group. GAPDH: glyceraldehydes-phosphate dehydrogenase. 

 
Curcumin inhibits apoptosis in cultured PC12 cells 
induced by AlCl

3

PC12 cells were exposed to 10, 100, 500 and 1000 
µmol/L AlCl

3

, in the growth medium for 3 days. By 48 

hours cells in AlCl

3

-treated cultures presented abnormal 

aggregation, shrinkage of cell bodies and degeneration of 
processes compared to untreated cultures. We also 
observed the significant reduction in the viability of cells 

as the dose of AlCl

3

 increased and the time passed (P 

<0.01, Figure 3A). When the dose of AlCl

3

 was increased 

to 1000 µmol/L for 3 days, the viability of cells was 
decreased to (62±2)% compared to control cells. So we 
chose 1000 µmol/L AlCl

3

 as the model dosage to incubate 

with cells. 

 

In order to observe curcumin exposure on cell viability, 
water insoluble curcumin was dissolved in DMSO, 
incubated with cells at levels of 20, 40, 80, and 160 
µmol/L. The MTT assay found that low dose of curcumin 
(20, 40, and 80 µmol/L) did not affect cell viability but 
the high dose decreased cell viability in a time 
–dependent manner (P <0.01) (Figure 3B).   
 
Based on previous results, high dose curcumin was 
deleted in the next test. AlCl

3

 and curcumin were then 

incubated together and curcumin protection of cells from 
AlCl

3

 toxicity was determined. Results showed that 20 

and 40 µmol/L curcumin could decrease AlCl

3

 damage, 

as characterized by higher levels of cell viability (P <0.01) 
(Figure 3C). Eighty µmol/L curcumin did not show any 
protection from toxicity. 

 

Occurrence of apoptosis was further confirmed by the 
appearance of changes in the nuclear morphology of 
treated cells. As shown in Figure 2, following exposure to 
AlCl

3

, cells exhibited altered nuclei as assessed by 

staining of cells with the DNA-binding fluorochrome 
Hoechst 33258. The nuclei in the AlCl

3

-treated groups 

appeared either shrunken and irregularly shaped or 
degraded, with aggregation and fragmentation of 
chromatin (Figure 4B). In the control group, most nuclei 
had regular contours and were round and large in size 
(Figure 4A). Curcumin (20 and 40 µmol/L) and AlCl

3

 

co-treated groups showed DNA condensation but no 
fragmentation of chromatin (Figures 4C and 4D). The 80 
µmol/L curcumin group showed irregular contours and 
fragmentation of chromatin (Figure 4E). 

 

Figure 5 shows a display of propidium iodide vs 
annexin-V/PI fluorescence. It was possible to distinguish 
early apoptotic, late apoptotic and dead cells. The 
intensity of staining for classification of the cells into 
positive and negative staining classes were determined 
from histogram analyses of signals from propidium 
iodide only and annexin-V only. The lower left quadrants 
of the histograms showed the viable cells which excluded 
propidium iodide and were negative for annexin-V-FITC   

background image

Chin Med J 2008;121(9):832-839 

836 

We next investigated the mechanism by which curcumin 
protects PC12 cells from AlCl

3

 neurotoxicity. We have 

shown that treatment with curcumin cells results in 
inhibition of the AlCl

3

 induced apoptosis. Results of 

Western blot analysis showed that the level of the 
anti-apoptotic protein Bcl-2 decreased remarkably in the 
AlCl

3

 treated group compared to the control group (P 

<0.05) (Figure 6). Cells incubated with AlCl

3

 and 

curcumin, 20 and 40 µmol/L, together showed higher 
levels of Bcl-2 protein compared to the model group (P 
<0.05). There was no significant difference in the levels 
of Bax protein (P >0.05).   

 

 

DISCUSSION 

 
Apoptosis is a form of programmed cell death that 
involves changes in the cytoplasm, ER, mitochondria and 
nucleus. It typically includes the production and/or 
activation of proteins such as Bcl-2 and Bax that 
decrease/increase the permeability of mitochondrial and 
ER membranes resulting in the release into the cytoplasm 
of cytochrome c from the mitochondria and calcium from 
the ER.

13

 Latter events then activate enzymes called 

caspases that cleave various protein substrates to sculpt 
morphological and biochemical aspects of the cell 
apoptosis process. There are several lines of evidence for 
apoptosis in AD. Postmortem analysis of AD brain by 
TUNEL analysis showed positive neurons and glia in the 
hippocampus and cortex indicating DNA fragmentation.

14-16

 

Increased expression of Bcl-2 family members,

17,18

 as 

well as increased caspase activities and cleavage of 
caspase substrates have also been detected in the AD 
brain.

19

 The triggers of cell death in AD may include Aβ, 

aluminum silicate granules which were surrounded by 
insoluble plaques, activation of glutamate receptors, 
increased oxidative stress, DNA damage and elevation of 
intracellular calcium levels. 

 
Figure 3. 
Viability of PC 12 cells after exposure to AlCl

3

 

with/without curcumin. A: dose and time-dependency of AlCl

3

 

neurotoxicity. After exposure to various concentrations of AlCl

3

 

for 3 days cell viability was obtained as the percentage relative 
to that of control (no addition) cells. Data show means ± SE 

(n=6). 

**

P <0.01, significantly different from control group. B: 

dose and time-dependency of curcumin on cell viability. After 
exposure to various concentrations of curcumin for 3 days, cell 

viability was obtained as the percentage relative to that of 
control (no addition) cells. Data show means ± SE (n=6). 

**

P<0.01, significantly different from control group. C: after 

exposure to AlCl

3

 and various concentrations of curcumin for 3 

days, cell viability was obtained as the percentage relative to 
that of control (no addition) cells. Data show means ± SE (n=6). 

**

P <0.01, significantly different from control group. 

##

P <0.01, 

significantly different from model group. 

 
There is no animal model available that can mimic all the 
cognitive, behavioral, biochemical, and histopathological 
abnormalities observed in patients with AD.

20

 However, 

partial reproduction of AD neuropathology and cognitive 
deficits have been achieved with pharmacological 
approaches, such as cholinergic dysfunction-related 
animal models, amyloid peptide related animal models, 
and transgenic animal models.

21-23

 In this study we set up 

a different AD animal model, administered AlCl

3

 

combined with D-galactose for 90 consecutive days. 
Many scientific studies have brought to light the potential 
toxicity of aluminum in experimental animal models and 
in humans under different clinical conditions.

24 

Candy et 

al,

25

 using energy dispersive X-ray microanalysis, found 

the presence of minuscule insoluble Al silicate granules in 
the brains of patients with AD. A very detailed study by 
Savory et al

26

 clearly showed that aged rabbits are more 

susceptible to Al toxicity compared to young rabbits. 
Al-induced neuropathological events (alteration in Bcl-2: 
Bax ratio, oxidation, apoptosis, redo-active iron, etc.) in 
aged rabbits mimic AD neuropathology. Some findings 

 
binding. The lower right quadrants represented the early 
apoptosis cells, propidium iodide negative and 
annexin-V-FITC positive. The upper right quadrants 
contained late apoptosis and necrotic cells, positive for 
propidium iodide and for annexin-V binding. The upper 
left quadrants represented cells damaged during the 
procedure.  
 
In the control group, most cells were healthy and the rate 
of apoptosis was about (9.20±0.20)% (Figure 5A). PC12 
cells exposed to AlCl

3

 had a significantly increased rate of 

apoptosis, (34.33±3.30)% compared to control group (P 
<0.01) (Figure 5B). Cells incubated with AlCl

3

 and 

curcumin (20 and 40 µmol/L) together showed lower 
levels of apoptosis compared to the model group 
(23.47±1.15)% and (24.43±0.91)% (P <0.05) (Figures 5C 
and 5D). The high dose of curcumin, 80 µmol/L, did not 
show any protection from AlCl

3

 intoxication (Figure 5E). 

background image

Chinese Medical Journal 2008; 121(9):832-839 

837

 

Figure 4. Fluorescence images of Hoechst 33258-stained cells after a 72-hour exposure 
to AlCl

3

 in the absence or presence of curcumin. A: control cells. B: AlCl

3

 (1 mmol/L) 

treated model cells. C, D, and E: AlCl

3

 and curcumin (20, 40, and 80 µmol/L) co-treated 

cells. 

 

 

Figure 5. Flow cytometric analysis of apoptosis and 
necrosis in treated cells. A: control cells. B: AlCl

3

(1 

mmol/L) treated model cells. C,  D, and E: curcumin 

(20, 40, and 80 µmol/L) and AlCl

3

 co-treated cells. 

**

P

<0.01, significantly different from control group. 

##

P

<0.05, significantly different from model group. 

 

 

 
Figure 6. 
Western blot of Bcl-2 and Bax in cultured PC12 cells 
extracts. Lane 1: control group. Lane 2: AlCl

3

 treated model 

group. Lanes 3–5: curcumin (20, 40, and 80 µmol/L) treated 
groups. The experiment was repeated three times with similar 
results. 

*

P <0.05, significantly different from control group. 

<0.05, significantly different from model group. 

suggest an almost threefold increased absorption of Al in 
AD patients compared to healthy controls.

27

   

 
Chronic administration with a low dose of D-galactose 
(D-gal) induces changes that resemble natural aging in 
animals, such as a shortened life span, cognitive 
dysfunction, neurodegeneration, oxidative stress, 
decreased immune responses and gene transcriptional 
changes.

28-31

 D-gal-induced senescence acceleration has 

been widely used as a model for studying aging 
mechanisms and for screening drugs.

32,33

 Because 

D-gal-induced senescence is accompanied by 
neurodegeneration, when combined with neurotoxin Al 
treatment, it would be an ideal model for studying the 
molecular mechanisms involved with age-associated 
neurodegeneration disease— Alzheimer’s disease. Based 
on previous studies, in our experiment, the mice were 
administrated AlCl

3

 10 mg/kg orally and given 

intraperitoneal injections of D-galactose 120 mg/kg for 

background image

Chin Med J 2008;121(9):832-839 

838 

90 days to set up our AD animal model. 
 
In the in vivo study, the mice treated with AlCl

3

 combined 

with D-galactose for 90 days have induced morphology 
and biochemistry changes. This kind of animal model is 
based upon the proven theory of AlCl

3

 neurotoxin and 

D-gal induced senescence. This chronic animal model 
developed a simulated slow evolution of the 
neurodegenerative disease; it is used for assessing the 
validity of therapeutic interventions with drugs. Results 
showed that behavioral deficits in step-through tests are 
similar to the cognitive impairments in AD. HE staining 
in the hippocampus also suggests that the condensed, 
dark stained neurons, neurofibrillary degeneration and 
neuron loss were similar to the pathology in AD.   
 
Apoptosis, or programmed cell death, plays a critical role 
in the normal development and maintenance of tissue 
homeostasis and is also a process by which brain cells die 
in AD. Mitochondrial changes following cytotoxic stimuli 
represent a primary event in apoptotic cell death. The 
apoptotic generated factor, cytochrome c, release from 
mitochondria into the cytoplasm has been shown to 
involve three distinct pathways. One implicates the 
opening of the mitochondrial permeability transition pore 
(MTP), the second is triggered by the translocation to 
mitochondria of the pro-apoptogenic Bax which can form 
a channel by itself, and the third may result from the 
interaction of Bax with the voltage-dependent anion 
channel (VDAC) to form a larger channel which is 
permeable to cytochrome c. In contrast to Bax, the 
anti-apoptotic Bcl-2 has the ability to block the release of 
cytochrome c from mitochondria by mechanisms such as 
a direct blockade of the MTP opening, or by functioning 
as a docking protein.

33,34

 We have shown that 

administration with AlCl

3

 combined with D-galactose 

results in Bcl-2 down-regulation. These results indicate 
that AlCl

3

 and D-galactose target the signaling pathway 

of mitochondria. Furthermore, the neuroprotective effect 
of curcumin treatment resulted in inhibition of the AlCl

3

 

and D-galactose induced apoptosis with enhanced levels 
of the anti-apoptotic proteins Bcl-2. 
 
The PC12 cell is a cloned rat pheochromocytoma cell line 
that retains a number of chromaffin cell characteristics, 
such as the presence of nicotinic cholinergic receptors, 
the synthesis and secretion of catecholamine and the 
expression of a number of neuropeptide genes. The PC12 
cell line is a useful model for the study of neuron 
development, since PC12 cells can be induced to 
differentiate toward sympathetic neurons after exposure 
to nerve growth factor (NGF).

35 

Although the viability of 

cells decreased significantly as the dose of AlCl

3

 

increased, we used this exposure time and dose to 
establish a marked model of apoptosis and then to study 
the mechanism by which curcumin protects cells through 
anti-apoptosis pathways.   
 
The MTT assay found that curcumin (20 and 40 µmol/L) 

could protect cells from AlCl

3

 toxin and increase cell 

viability. DNA-binding fluorochrome Hoechst 33258 and 
flow sytometric analysis revealed the decreased apoptosis 
in curcumin treated cells. The mechanism may inhibit the 
activation of Bax and promote the activation of Bcl-2. 
Other studies have shown that administration of curcumin 
to mice at a dose of 2000 mg/kg, which is 83 times 
greater than the dose utilized by Lim et al,

36,37

 was 

non-toxic. In this study curcumin at a dose of 200 mg/kg 
in mice and 20–40 µmol/L in cells was effective in 
blocking apoptosis, indicating that a low dose of 
curcumin may be effective in preventing Alzheimer’s 
disease. But our results also showed that high doses of 
curcumin had no effect on anti-apoptosis. This is not in 
concordance with other results. 
 
In summary, our study provides one mechanism, among 
several multifactor effects, by which curcumin hampers 
the process of apoptosis by decreasing Bax activity. Our 
in vitro studies also provide support for the hypothesis of 
the anti-apoptosis property of curcumin. These studies 
provide a rationale for the therapeutic use of curcumin. 
Curcumin may be a potent anti-apoptosis drug for the 
prevention of Alzheimer’s disease.   
 

REFERENCES 

 
1.  Alzheimer’s Disease International. About Alzheimer’s disease. 

(Accessed December 14, 2005 at http://www.alz.co.uk/ 
alzheimers/faq.html#howmany
). 

2.  Alzheimer’s Association. Basic facts and statistics. (Accessed 

December 14, 2005 at http://www.alz.org/Resources/ 
TopicIndex/BasicFacts.asp
). 

3.  Di Santo R, Costi R, Artico M, Ragno R, Greco G, Novellino 

E, et al. Design, synthesis and biological evaluation of 
heteroaryl diketohexenoic and diketobutanoic acids as HIV-1 
integrase inhibitors endowed with antiretroviral activity. 
Farmaco 2005; 60: 409-417.   

4.  Xu Y,  Ku  B, Tie L, Yao  H,  Jiang W,  Ma  X,  et  al.  Curcumin 

reverses the effects of chronic stress on behavior, the HPA axis, 
BDNF expression and phosphorylation of CREB. Brain Res 
2006; 1122: 56-64. 

5.  Shi M, Cai Q, Yao L, Mao Y, Ming Y, Ouyang G. 

Antiproliferation and apoptosis induced by curcumin in 
human ovarian cancer cells. Cell Boil Int 2006; 30: 221-226.   

6.  Ganguli M, Chandra V, Kamboh MI. Apolipoprotein E 

polymorphism and Alzheimer’s disease: the Indo-US 
Cross-National Dementia Study. Neurology 2000; 57: 
824-830.  

7.  Cole GM, Morihara T, Lim GP, Yang F, Begum A, Frautschy 

SA. NSAID and antioxidant prevention of Alzheimer's disease: 
lessons from in vitro and animal models. Ann N Y Acad Sci 
2004; 1035: 68-84. 

8.  Baum L, Alex Ng. Curcumin interaction with copper and iron 

suggests one possible mechanism of action in Alzheimer’s 
disease animal models. J Alzheimer’s Dis 2004; 6: 367-377.   

9.  Kim DS, Park SY, Kim JY. Curcuminoids from Curcuma 

longa L. (Zingiberaceae) that protect PC12 rat 
pheochromocytoma and normal human umbilical vein 

background image

Chinese Medical Journal 2008; 121(9):832-839 

839

endothelial cells from Aβ (1-42) insult. Neurosci Lett 2001; 
303: 57-61.   

10.  Zhu YG, Chen XC, Chen ZZ, Zeng YQ, Shi GB, Su YH, et al. 

Curcumin protects mitochondria from oxidative damage and 
attenuates apoptosis in cortical neurons. Acta Pharmacol Sin 
2004; 25:1606-1612.   

11.  Zhang Y, Shioyama Y, Sugiura M, Saito H. Effects of Crocus 

sativus L. on the ethanol-induced impairment of passive 
avoidance performances in mice. Biol Pharmac Bull 1994; 17: 
217-221.  

12.  Ye JW, Shang YZ, Tang XC. Huperzine A ameliorates the 

impaired memory of aged rat in the Morris water maze 
performance. Acta Pharmacol Sin 2000; 21: 65-69.   

13.  Yuan J, Yankner BA. Apoptosis in the nervous system. Nature 

2000; 407: 802-809.   

14.  Li WP, Chan WY, Lai HW, Yew DT. Terminal dUTP nick end 

labeling (TUNEL) positive cells in the different regions of the 
brain in normal aging and Alzheimer patients. J Mol Neurosci 
1997; 8: 75-82. 

15.  Lucassen PJ, Chung WC, Kamphorst W, Swaab DF. DNA 

damage distribution in the human brain as shown by in situ 
end labeling; area-specific differences in aging and Alzheimer 
disease in the absence of apoptotic morphology. J Neuropathol 
Exp Neurol 1997; 56: 887-900. 

16.  Sugaya K, Reeves M, McKinney M. Topographic associations 

between DNA fragmentation and Alzheimer’s disease 
neuropathology in the hippocampus. Neurochem Int 1997; 31: 
275-281.  

17.  Kitamura Y, Shimohama S, Kamoshima W, Ota T, Matsuoka Y, 

Nomura Y, et al. Alteration of proteins regulating apoptosis, 
Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in 
Alzheimer’s disease. Brain Res 1998; 780: 260-269.   

18.  Engidawork E, Gulesserian T, Seidl R, Cairns N, Lubec G. 

Expression of apoptosis related proteins in brains of patients 
with Alzheimer’s disease. Neurosci Lett 2001; 303: 79-82.   

19.  Pompl PN, Yemul S, Xiang Z, Ho L, Haroutunian V, Purohit D, 

et al. Caspase gene expression in the brain as a function of the 
clinical progression of Alzheimer disease. Arch Neurol 2003; 
60: 369-376. 

20.  Yamada K, Nabeshima T. Animal models of Alzheimer’s 

disease and evaluation of anti-dementia drugs. Pharmacol 
Therapeut 2000; 88: 93-113.   

21.  Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, 

Blackwell C, et al. Alzheimer-type neuropathology in 
transgenic mice overexpressing V717F β-amyloid precursor 
protein. Nature 1995; 373: 523- 527.   

22.  Pepeu G, Giovannelli L, Casamenti F, Scali C, Bartolini L. 

Amyloid  β-peptides injection into the cholinergic nuclei: 
morphological, neurochemical and behavioral effects. Prog 
Brain Res 1996; 109: 273-282.   

23.  Yamada K, Fuji K, Nabeshima T, Kameyama T. Neurotoxicity 

induced by continuous infusion of quinolinic acid into the 
lateral ventricle in rats. Neurosci Lett 1990; 118: 128-131.   

24.  McLaughlin AI, Kazantzis G, King E, Teare D, Porter RJ, 

Owen R. Pulmonary fibrosis and encephalopathy associated 
with the inhalation of AlCl

3

 dust. Br J Ind Med 1962; 19: 

253-263.  

25.  Candy JM, Oakley AE, Klinowski J, Carpenter TA, Perry RH, 

Atack JR, et al. Aluminosilicates and senile plaque formation 
in Alzheimer’s disease. Lancet 1986; 1: 354-357.   

26.  Savory J, Rao JK, Huang Y, Letada PR, Herman MM. 

Age-related hippocampal changes in Bcl-2: Bax ratio, 
oxidative stress, redox-active iron and apoptosis associated 
with AlCl

3

-induced neurodegeneration: increased susceptibility 

with aging. Neurotoxicology 1999; 20: 805-817.   

27.  Roberts NB, Clough A, Bellia JP, Kim JY. Increased 

absorption of aluminium from a normal dietary intake in 
dementia. J Inorg Biochemistry 1998; 69: 171-176.   

28.  Ho S, Liu J, Wu R. Establishment of the mimetic aging effect 

in mice caused by D-galactose. Biogerontology 2003; 4: 
15-18. 

29.  Shen Y, Xu S, Wei W, Sun X, Yang J, Liu L, et al. Melatonin 

reduces memory changes and neural oxidative damage in mice 
treated with D-galactose. J Pineal Res 2002; 32: 173-178.   

30.  Tian J, Ishibashi K, Ishibashi K, Reiser K, Grebe R, Biswal S, 

et al. Advanced glycation endproduct-induced aging of the 
retinal pigment epithelium and choroid: a comprehensive 
transcriptional response. Proc Natl Acad Sci U S A 2005; 102: 
11846-11851.  

31.  Wei H, Li L, Song Q, Ai H, Chu J, Li W. Behavioural study of 

the D-galactose induced aging model in C57BL/6J mice. 
Behav Brain Res 2005; 157: 245-251.   

32.  Song X, Bao M, Li D, Li Y. Advanced glycation in 

D-galactose induced mouse aging model. Mech Ageing Dev 
1999; 108: 239-251.   

33.  Adams JM, Cory S. The Bcl-2 protein family: Arbiters of cell 

survival. Science 1998; 281: 1322-1326.   

34.  Eskes R, Antonsson B, Osen-Sand A, Montessuit S, Richter C, 

Sadoul R, et al. Bax-induced cytochrome C release from 
mitochondria is independent of the permeability transition 
pore but highly dependent on Mg

2+

 ions. J Cell Biol 1998; 143: 

217-224.  

35.  Margioris AN, Markogiannakis E, Makrigiannakis A, 

Gravanis A. PC12 rat pheochromocytoma cells synthesize 
dynorphin. Its secretion is modulated by nicotine and nerve 
growth factor. Endocrinology 1992; 131: 703-709.   

36.  Srimal RC, Dhawan BN. Pharmacology of diferuloyl methane 

(curcumin), a non-steroidal anti-inflammatory agent. J Pharm 
Pharmacol 1973; 25: 447-452.   

37.  Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. 

The curry spice curcumin reduces oxidative damage and 
amyloid pathology in an Alzheimer’s transgenic mouse. J 
Neurosci 2001; 21: 8370-8377.   

 

(Received January 3, 2008) 

Edited by LIU Dong-yun