Zadanie 1 (Podpunkty 1 i 2 za 1 punkt każdy, zaś 3 za 2 punkty) Dla pewnego trzygałęziowego układu gospodarczego dane są macierz Leontiewa L oraz macierz do niej odwrotna L-1:
8
,
0 0
− 0
,
0 83
− 5
,
0
5
,
1 49
5
,
0 97
8
,
0 85
1
-
L = − ,
0 4
8
,
0 33
0 ,
L = 7
,
0 43
,
1 487
,
0 42
5
0
− 1,
0 47
8
,
0 7
5
3
,
0 54
7
,
0 08
3
,
1 45
Każde z poniższych stwierdzeń ocenić jako prawdziwe lub fałszywe, podając uzasadnienie takiej oceny:
1. Procesy produkcyjne w gałęziach drugiej i trzeciej charakteryzują się taką samą materiałochłonnością produkcji.
2. Wzrost produktu globalnego w gałęzi trzeciej o 10 jp przy niezmienionych wielkościach produktu globalnego w pozostałych gałęziach spowoduje wzrost zużycia produkcyjnego wyrobów tej gałęzi o 3 jp.
W pewnym wariancie planistycznym przewiduje się następujące zmiany wartości produkcji globalnej:
• W gałęzi pierwszej wzrost o 10 jp,
• W gałęzi drugiej spadek o 20 jp,
• W gałęzi trzeciej wzrost o 15 jp.
Produkt końcowy gałęzi pierwszej stanowią w całości dobra konsumpcyjne, a gałęzi drugiej – dobra inwestycyjne. Natomiast produkt końcowy gałęzi trzeciej przeznaczany jest w 75% na cele konsumpcyjne, a w 25% na akumulację.
3. Obliczyć, o ile zmieni się konsumpcja w wyniku opisanych wyżej zmian wartości produkcji globalnej.
Zadanie 2 (każdy podpunkt za 1 punkt)
W procesie produkcyjnym pewnego wyrobu wykorzystuje się jedną z dwóch technologii –
tradycyjną lub nową. Na podstawie danych ze 100 przedsiębiorstw stosujących te technologie zbadano liniową zależność miesięcznego zużycia enargii (yt, kWh) od wielkości miesięcznej produkcji (xt, tys. sztuk) i rodzaju stosowanej technologii: y = α
,
0 + α x
1
+ α Z
2
+ ε
t
t
t
t
gdzie t - numer zakładu produkcyjnego, zaś Zt - zmienna zero-jedynkowa, przyjmująca wartość 0, jeśli stosowana jest technologia tradycyjna, 1 jeśli stosowana jest technologia nowoczesna. Otrzymano następujące oszacowania parametrów: otrzymując
yˆ = 15 3
, 1+ 9
,
4 6 x − 1
,
3 4 Z , t = 1, ..., 100.
t
t
t
( 2,57)
(0,03)
(0,98)
W nawiasach pod oszacowaniami parametrów podane są średnie błędy szacunku.
Ponadto wiadomo, że
Skorygowany współczynnik determinacji wynosi 0,78.
Nie ma podstaw do odrzucenia hipotezy o normalności rozkładu składnika losowego.
Nie ma podstaw do odrzucenia hipotezy o liniowości badanego modelu.
a. Zinterpretować oszacowanie parametru przy zmiennej "wielkość miesięcznej produkcji".
b. Typowy duży zakład produkcyjny stosuje technologię nowoczesną i wytwarza miesięcznie średnio 100 tys. sztuk produktu. Typowy mały zakład produkcyjny stosuje technologię tradycyjną i wytwarza miesięcznie średnio 40 tys. sztuk. Porównać miesięczne zużycie energii w tych zakładach.
c. Za pomocą odpowiedniego testu statystycznego zweryfikować hipotezę o istotnie niższym zużyciu energii w przypadku stosowania technologii nowoczesnej w porównaniu z technologią tradycyjną (przy takim samym poziomie produkcji).
d. Obliczyć wartość współczynnika determinacji dla powyższego modelu. Skomentować przydatność skorygowanego współczynnika determinacji do oceny dopasowania powyższego modelu do danych.
Zadanie 3 (każdy podpunkt za 1 punkt)
Dane jest zadanie PL:
f(x
→
1,x2,x3)=3x1+x2 - 2x3
max
przy warunkach:
I
x
≤
1-2x2-x3 10
II
2x
≤
1+x2+2x3 12
III
x
≤
1-x2+x3 5
IV
x ≥
j 0, j=1,2,3
Dla rozwiązania optymalnego *
x = ( *
*
*
x , x , x
1
2
3 ) tego zadania dany jest raport wrażliwości
wygenerowany przez Solver:
Wartość
Przyrost
Współczynnik Dopuszczalny Dopuszczalny
Nazwa
końcowa
krańcowy
funkcji celu
wzrost
spadek
X1
5.666666667
0
3
1E+30
1
X2
0.666666667
0
1
0.5
4
X3
0
-5
-2
5
1E+30
Wartość
Cena
Prawa strona Dopuszczalny Dopuszczalny
Nazwa
końcowa
dualna
w. o.
wzrost
spadek
I
4.333333333
0
10
1E+30
5.666666667
II
12 1.333333333
12
1E+30
2
III
5 0.333333333
5
1
17
Każde z poniższych zdań ocenić jako prawdziwe lub fałszywe, podając uzasadnienie.
1. ( x , x , x ) = (1, 1, 1) jest rozwiązaniem dopuszczalnym zadania, ale bez względu na 1
2
3
wartości współczynników funkcji celu nie może być jego jedynym rozwiązaniem optymalnym.
2. Zmiana wartości wyrazu wolnego w warunku II z 12 na 5 spowoduje spadek minimalnej wartości funkcji celu.
3. Usunięcie warunku I z zadania spowoduje wzrost minimalnej wartości funkcji celu.
4. Dla współczynnika funkcji celu przy zmiennej x 1 ani wzrost ani spadek jego wartości o 10% nie naruszy optymalności rozwiązania x*.
Zadanie 4 (każdy podpunkt za 1 punkt)
Pewien zakład może produkować dwa wyroby, I i II. Produkcja zakładu w ustalonym okresie musi spełniać określone warunki:
• wartość wytworzonej produkcji liczona w cenach zbytu musi wynosić co najmniej 300 jednostek pieniężnych;
• wielkość produkcji wyrobu II ma stanowić co najmniej 125% wielkości produkcji wyrobu I, a ta z kolei nie może być mniejsza od 20 jednostek.
Koszty bezpośrednie ponoszone przy produkcji poszczególnych wyrobów są proporcjonalne do wielkości produkcji. Koszt bezpośredni wytworzenia jednostki wyrobu każdego rodzaju oraz ich cenę podaje tablica:
wyrób
Koszt bezpośredni
Cena
I
2
3
II
3,5
5
1. Ile wyrobu II produkuje zakład w rozwiązaniu optymalnym?
2. Ile wynosi optymalny koszt produkcji?
3. Ile wynosi zysk zakładu ( liczony jako różnica pomiędzy wartością wytworzonej produkcji w cenach zbytu a kosztem)?
4. Czy plan produkcji xI=100, xII=200 jest planem dopuszczalnym?
Zadanie 5 (każdy podpunkt za 1 punkt)
Oszacowano liniowy model zależności pomiędzy rocznym wynagrodzeniem profesorów z siedmiu amerykańskich uniwersytetów (w tysiącach dolarów) a liczbą lat, które upłynęły od obrony doktoratu każdego z nich. Otrzymano następujące wyniki: Model 1: Estymacja KMNK z wykorzystaniem 222 obserwacji 1-222
Zmienna zależna: SALARY
Zmienna
Współczynnik
Błąd stand.
Statystyka t Wartość p
const
52.2375
2.37282
22.015
<0.00001 ***
YEARS
1.49110
0.113559
13.131
<0.00001 ***
Średnia arytmetyczna zmiennej zależnej = 79.0975
Odchylenie standardowe zmiennej zależnej = 23.8727
Suma kwadratów reszt = 70611.4
Błąd standardowy reszt = 17.9154
Wsp. determinacji R-kwadrat = 0.439366
Skorygowany wsp. R-kwadrat = 0.436817
Stopnie swobody = 220
Logarytm wiarygodności = -954.616
Kryterium informacyjne Akaike'a (AIC) = 1913.23
Kryterium bayesowskie Schwarza (BIC) = 1920.04
Kryterium infor. Hannana-Quinna (HQC) = 1915.98
Test na normalność rozkładu reszt -
Hipoteza zerowa: składnik losowy ma rozkład normalny
Statystyka testu: Chi-kwadrat(2) = 13.3946
z wartością p = 0.00123427
W drugim modelu zmienną objaśnianą był logarytm naturalny z wartości SALARY
Model 2: Estymacja KMNK z wykorzystaniem 222 obserwacji 1-222
Zmienna zależna: l_SALARY
Zmienna
Współczynnik
Błąd stand.
Statystyka t Wartość p
const
3.96998
0.0289824
136.979
<0.00001 ***
YEARS
0.0197313
0.00138705 14.225
<0.00001 ***
Średnia arytmetyczna zmiennej zależnej = 4.32541
Odchylenie standardowe zmiennej zależnej = 0.302511
Suma kwadratów reszt = 10.5346
Błąd standardowy reszt = 0.218825
Wsp. determinacji R-kwadrat = 0.479116
Skorygowany wsp. R-kwadrat = 0.476748
Stopnie swobody = 220
Logarytm wiarygodności = 23.3254
Kryterium informacyjne Akaike'a (AIC) = -42.6509
Kryterium bayesowskie Schwarza (BIC) = -35.8455
Kryterium infor. Hannana-Quinna (HQC) = -39.9033
Test na normalność rozkładu reszt -
Hipoteza zerowa: składnik losowy ma rozkład normalny
Statystyka testu: Chi-kwadrat(2) = 2.19318
z wartością p = 0.334007
1. Zinterpretuj oszacowanie parametrów przy zmiennej objaśniającej w obu modelach.
2. Zinterpretuj wynik testu normalności składnika losowego w modelu 1.
3. Czy w modelu 1 występuje zjawisko autokorelacji? Odpowiedź uzasadnij.
4. Który model jest lepszy? Odpowiedź uzasadnij.