Zadania domowe do ćwiczeń dziesiątych, jedenastych i dwunastych Zadanie 1 (12 punktów)
Wymyśl przykład branży (innej niż na zajęciach) w której panuje: a) konkurencja doskonała,
b) konkurencja monopolistyczna,
c) oligopol,
d) monopol.
Dla każdego przykładu opisz jak przedstawia się sprawa: a) liczby firm w branży,
b) barier wejścia,
c) wpływu przedsiębiorstwa na cenę (tzn. co się dzieje, gdy pojedynczy przedsiębiorca chce podwyższyć lub zmniejszyć cenę).
Zadanie 2 (4 punkty)
Funkcja kosztu całkowitego firmy doskonale konkurencyjnej ma postać: TC( q) = 20 + 2 q +
q 2. Jeżeli cena wyrobu równa się 30, to ile firma powinna wytwarzać, jeśli chce maksymalizować zysk? Jaki zysk wówczas osiągnie?
Zadanie 3 (15 punktów)
1
1
Odwrócona funkcja popytu w gałęzi ma postać D− ( q) = 100 − q . Koszty przeciętne są stałe 2
i równe kosztom krańcowym: ATC( q) = MC( q) = 10. Oblicz ile wyniesie czysta strata społeczna (utrata dobrobytu) w przypadku, gdy na rynku działa monopolista. Oblicz ile wynosi strata społeczna w przypadku duopolu i triopolu (oligopolu z odpowiednio dwiema i trzema firmami) typu Cournot. Czy dostrzegasz jakąś prawidłowość w kształtowaniu się poziomu straty społecznej w zależność od liczby firm obecnych na rynku? Jak myślisz dlaczego tak się dzieje?