Predicting the Growth of Different Dimensions of M

background image

/

!"

/

# $%

&'( !"

/

)*+*

, -

./ 0 1 2/13 ( 4 % 0 5 6

(Melia azedarach)

16

(Morus alba)

!% 57 8 (

0 $ 9 '

)

*

! / :

;

0 6 $ :

*

5 5 < :

;

$= 9 $>

?

)

:

/

/

:

/

/

(

"

@

#

4

A B

C #

!% 57

' 8 ( 0 1D ( E 9 /C

% 0 5 F

G

G'

EG% 9 GH > G'

E #

( 57

8 E

.

#( ( G16

G ./ 0 1 1D (

J ( % E

0 5 F 4 K6

( G4

( G

L :M9 N L M % ED ( 2/13

M

> (

!

( # O ( P ( - >

( :2/13 F 6 ( 0 1D ( Q RS

6 N

0 57 %

% < '

.

MT1U V1 0 6 F 1U V1 0 6 ( 4 F 0

J 5<

9 ( 9 ( < L/13 '

( 4 % 0 5 F $3

6

J

S #( L1 (

0

>

J ( F # %

J #

.

5< W 1

F ( 9 ( ( 0

'

/$X 6" : RD Y

Z

0

J [ A F

:# % \

'

MG S 0 G6 G $1 GO Y G :E

$

7S

#

( 4 F $3

F

%

J

./ 0 1

J ( ( 0

> ( #

)

M9 N L

^_

/

`

=

R

2

6 N L :

b_

/

`

=

R

2

Q RS :

b_

/

`

=

R

2

(

16

)

M9 N L

b`

/

`

=

R

2

6 N L :

?`

/

`

=

R

2

Q RS :

bd

/

`

=

R

2

(

%

4

.

F 1G

G J ( ' ( F 6e$'

#

( 4 % E

F , 5 0 5$' # %

J

)d

% # ( 0 1D ( # UD % A % Q RS ( O

.

#f

'

/9

:

0

J :F :./ 0 1 : 16

: % ( 4

.

!"

#

$%&

' ( !"

)* +

$! ,- . / 01 '& 2 # 3 & 4 ')5 !" #

.

$! ,- . / 01 '& 2 6 !"

$%&

' ( !" #

)* +

& 4 ')5 !" #

$! ,- . / 01 '& 2 # 3

.

1" 3 '& 2 6 !"

$%&

' ( !" #

)* +

'& 2 # 3 & 4 ')5 !" #

1" 3

.

%"

$! ,- . / 01 '& 2

$%&

' ( !" #

)* +

! ,- . / 01 '& 2 # 3 & 4 ')5 !" #

$

*

:

7 , 8+ 9 :;+

#

86!& 8<" ;

$

:

zkarimianf@gmail.com

Downloaded from jcpp.iut.ac.ir at 13:57 IRDT on Wednesday May 3rd 2017

background image

/

!"

/

# $%

&'( !"

/

)*+*

==

T

9 >"

1

?*+ 3" $8 $ @ 3 A B

C D;+ E

$DD+

*DDF G,DD% DDH $DDI" J

)DDF .

.

E DD! 3 DD% *F

K+ ! .

K.

*F G,% L H G

$MMN $ 6< O 7 >

$+ AP K. $*Q ? K ')+P

L DH $ " D RL D K. )!"

F

@+

*F S6T+ 6U6

" &

+

)

V

.(

H W,< -

B

S6T+ A

&

%" KQ" +

&)T+ .

*F L

X DU " Y! 3" Z 0[+ 6O\& K. A)6% " . ) . A B

KB F

;2 #] 0. / (@L

K KO% & K@ [^ # L

A&)D. DL

6< O 9_ B"

"

" " $! D+" 6 / D;Q" & $! D;!" L

)@F . $ F K0> & H

.

B S " F 2"

Y! E " 3" A

" DD. ')DDF DD " $DD P 7_8DD + )DDF . `DD% @+ )DDF " DD.

' 6

' Q # L&

A a B % # L

*DF DL 0. D # DL

)

WD> MB

$2)@!" & $ a@L" ? _1

(

& CDB" 7"G6* & C %& K60 &

$+ b I & K RL E6+3 3" A& 6.

c DL K. 3 6! & )! F

. )L" N! )O. CI" +

)

.(

K0D> D 1 /)1 $ J 3"

K %

" d J 3" A B E6. `% @+

D. . ^ & $L

AP )DF 9_ B"

" e1 . f0 N+ g. @+ %

DF $D+ DL

)

h

.(

DDY@+

DDaO+

#

DDY! KDD[i! 3" KDDj A DD B DD

A"GD6+

D+ $L 2P K. $ B @F , 3 K,@Q 3" Kj & $8 k < "

l [^ & X U "

%" K ;."& B

.

6O^ + & $. H

$. D

E DF" D.

*DF L B % . m , " ')F A B

$D+ &

%" ;6+ B )F 3" $ 7 1_J"

$DI" J )D!"

$DO^"& & DD *. DDY@+

DDaO+ DF

)DD@ ?L" DD

DD

)

.(

A DD B fDD0 N+ DDO." E6DD. SDD."& DD. DDQ + 7 DD1_J"

Wn DDaO+ G,DD% DDH

&

DD%"

DD 7")L DD + c DD%" DD.

R6D c D%" . W,< -

7 D> KD. A D B )DF 1 D% $D@6.

$U6

)

g D% $D06B & g D% #SD% + #K D;LP )F

(

A&)D. &

$D+ ' " o6D\ $D\ & $Da

i+ 3" ' U %"

DF

)

&

=

.(

9)+

DB O." . $@ ,+

)O + )F $\ S."& & L

KD! 2 3"

6;.

DL

$D B $D0(@Q

)

#

V

&

(

GD6! &

K! 2 3" $B .

D%" ')DF *@ 6 G,% H $ B L

)

#

&

(

&

&)DT+ 7 Di6iT & 7 DO< [+ A D@ D +"

9)+ E66O

AP ED% &

DB DO." E6D. $\ S."& & L

DL

K. G6! p)!" " + E6aL K

" Q&

7& U C6<

E6D. L

K! 2

& "

9)+ $a60^"

L

A aL W, i

. Y!

+ K! 2

' " KD! 2 L " . & )@ ;L ' U %" C. ^ &

& KD G &

" D.

%" 3 6!

+ ) )Q C60T

)

.(

0 A 3 K! 2

).

L

Melia azedarach

' 6 3"

(Meliaceae

J DB KD. K %" $^ F Z @Q 6%P & 6<" %" $+ . $ B

+

+& i+

W ,D;! $D[6T

n D.

)

(

9 DM AP D j $ D, 3 &

K. A" " L *F q " G,% H f0 N+

DL 9 % 'r &

D%" K 2 " ^ '

;2 ' U %"

+ 6B"

.

$D @ 3 7 D KD! 2

)

Morus alba

L.

' 6 3"

Moraceae

(

D%" /& Di+ $ B G6!

K. K

K. AP ! s@Q 'r &

D1 & l `% @+ ' ;2 C6<

DQ& /)

%"

*F G,% L H A"&" 9 ,^"

+ ' 6+

)

.(

&

RL&r A @ $ @ 3 7 & 0 A 3 K! 2

$Dta KO< [+ & L

7 D> AP fD0 N+ DO." )DF &

DB E% E6. $\ &

AP

)+ &

%" K (!

F K0>

1 Y! 3" L

AP E6.

& X ! ?L A B ( . L

?DL & X ! ?L 6-

E6D@j

'3 D% & 7"GD6* D. *!P F K0>

1

&

*DF DL

R6

AP )F $@6.

D & $D.

7")L D + c %" . W,< - L

$+ 7 >

62

.

RL&r E " 3" b)L

#

9)+ 9)+ E66O

$ DL

*Q

E6aN

& )F A"G6+ 1 %

3" ' U %" .

+ K! 2

S."&

$\

.

uB F E6

DB O." K. m . + L

)

X DU "

l [^ & l X U " K@ X U " #C

(

$D+ B E% &

#)DF .

K! 2 K.

9)+ E " va K. A" . K

"

&

DB DO." DL

)DF

!P

R6 f0 N+ E6@% " *

G,% H `% @+

)+ & $@6.

"

9 a1"

.

' \ (

'3")!"

62

& L

#

*DF G,D% H B K! 2

A D 3

@ 3 7 & 0

D

;. $

D

6 & A

D

D% G

9

=

DH

Downloaded from jcpp.iut.ac.ir at 13:57 IRDT on Wednesday May 3rd 2017

background image

-

,

h6

2/13 ( 4 % 0 5

./ 0 1

h16

=

MB%

)

.

#

( 4

ED ( '

# %

J

:

M9 N L

)

2

(

Q N L :

)

i

(

6 N L :

)

Q

(

Q RS

)

(

.(

GDDD,%

)DDF / DD !" )*DD + $DD%&

' (DD !" s

DD

.

DDO."

D

'3")!"

2

DB CD X DU " C+ F K! 2 & E " ')F

6

)

3"

KB F E )@0. p ! E6+3 o[%

Da1 DL

(

KD@ X DU " #

B

)

E6 E6+3 o[% 3"

w . E

l L

(

l X U " &

)! . B l [^ &

.

'3")D!"

D*Q & l D D[^

D62

6+ W *! & )F / !" B K@ . a1 & 3" +

& ED " E6(!

)!)F ' U %" [^ K,% T+ " . ")i+

)

C8F

.(

'3")!"

62

KD06+ 3" ' U D%" D. L

D + & )D@0. l )D+ DL

$! a B %

)

^ .

$06+

+

(

)DF / D !"

.

)D@0. A D B

$D%)@L SD."& 3" ' U D%" . & @% x@% `6F va . X U "

)

y - q6 K[."

(

)!)F K,% T+

.

K.

3" ' U D%" . K `6 E "

`6F

@% x@%

dD " o[D% D DB p D! 3" `6F ")i+

&

?L

3" E6@j

E.

d " o[% B

'3")!"

B X U " &

62

3" ' U %" .

3 9 +

)F K,% T+

.

H = B (Tg –Tg )

h

:

# B X U "

B

:

+ `;I . B $i " K0>

#

Tg

:

E. `6F )>

B

&

Tg

:

p ! `6F )>

B

.

' " 3" ' U D%" . A B E%

#An :D;+ )D6 z

D+ DL

$DJ s

KJ T+ G,% H A" 2 & A" { !

=

9 D%

K. K F 2

)+P %

.

D*!P D A D+3 3" A B E% 6O+

)!)F K 2 Y! s

KJ T+

.

A B E% K

" +

K.

N+ C n

'3")D!" & 3" D,! D% fD0

S6DT+

D62

)DF ' U %" AP E% E6aN " . B

.

S6DT+ & ED "

'3")!" B K@ A +" 6

D 3 9 + va . s|% & )F

62

)F K,% T+ AP $, i E%

)

=

.(

B [^

=

B S6T+

/

$ )1

B E%

=

B [^

×

)F

B

ED " &

%" $ & U + ")i+ f0 N+ A B )F

$D @ 3 7 & 0 A 3 A B " . ")i+

WD, i

DY!

)F K 2

)

=

.(

&)I C

=

'3")!" B

)!)DF

D62

K

=

& $D @ 3 7 D KD! 2 KD. m . + B

=

DB

E6. $@% K@+" . 0 A 3 K! 2 K. d0O +

)D! . 9 %

.

A 8+ ')F A B

g 3 s

KJ T+ f0 N+ L

'3")!" &

F" $! ;8 W ,;! $@%

A D8+ DL A D B

62

K.

)DF / D !" $ M W_+ 7 >

.

3" A D B D K0D>

9&)Q # ( )8

A D8+ KD. KDQ D. & E6DF + L 6D;+ & L

'3")!"

D62

)

D. 6B K6DF I # " D< .

G,D% DH D & $D A

G a +

(

K. +" . 7& U +

7 D A B E6. K0> S% + J

&)I $ @ 3

/

0 A 3 &

. +

.

A B

q "

KD. $D%&

' (D !" s

KJ T+ G,% H ')F

CD6<

S6DT+ A ;8

)+

#

D6.P DY! 3" K. D + WD, i DL

f01 9 @ #$L

& 3 L L

...

)D! . KD

&

.

E6D.

'3")!" O."

B L ')F

62

)

D[^ & KD@ X U " #C X U "

l

(

AP E% &

"G " / ! 3" ' U %" .

Excel

A 6% 2 X" !"

L

' %

$D[B

)

Linear

(

)D@j #

KD0aQ

"

)

Polynomial

(

#

$ Da!

)

Exponential

(

$a

DD(< #

)

Logarithmic

(

$!" DD &

)

Power

(

Downloaded from jcpp.iut.ac.ir at 13:57 IRDT on Wednesday May 3rd 2017

background image

/

!"

/

# $%

&'( !"

/

)*+*

=

)F K 2

fD0 N+ E6@D% & DO." DB )DF 1 D%

F K,% T+

.

9)+ K^ % $[6T+ )F G6< !P " . f0 N+ 7 O< [+

L

$a

D(< #$ Da! CDq+

)O + )F $@T@+

)

(

#

Lundqvist

)

(

&

Richarde family

)

(

)!)F R +3P

.

KD< O+ D *!

K. $a

(<

O+ E *. A" @1

K^ D% S6T+ )F K,% T+ " . K<

' " ." .

& )DF KD 2 DY! DB E% K. m . + L

DO." )DF 1 D% E6D6O " . G6! \ I RL&r E " . @.

'3")!" f0 N+

$D @ 3 7 D & 0 A 3 K! 2 & ')F

62

)F ' U %" $a

(< K< O+ 3"

.

K! 2 )F R@ "&

+" c %" . L

B O."

L

.

K

)!)F G6< !P K!n % )F

1 % E6(! 6+ K06%&

)

h

(

E "

K[."

:

AGR

=

a-b/t

K[."

)

(

AGR

K!n % )F 1 % E6(! 6+

)

(Annual Growth Rate

.

`;I

06+

$

9 % +

a

:

w G.

B )O. E

)

mm

(

#

b

:

vj

DB )DO. E

)

mm

(

w G. )1 # B [^ & X U " O." E6. 3" #

A" @1 K.

a

vj )1 &

K.

A" @1

b

F $+ K 2 Y!

.

t

:

62 '3")!" E6. $! +3 ' &

L

)

$! D+3 ' & d6iT E "

%" ')F K 2 Y! 9 %

.(

E6(! D6+ ~ K[." 3" ' U %" .

K!n % )F

$! D+3 '3 D.

KD! 2 DL " D. D. vD 9 D%

F $+ K,% T+

.

j W 1

E6D6, ` " D\ #$! 6D% 2 7n DO+

)

R

(

D[B E6(! D6+ &

")! D%"

)

MSE

(

$DD @ 3 7 D & D0 A D 3 KD! 2 & " D.

K.

9&")Q `6

&

')F K•" "

)D!"

.

D0 A D 3 KD! 2

" E6D. A 6% 2 ` " \ E n .

DB ED% & CD X DU

KD0aQ )DD@j SD."&

"

)

/

=

=

R

(

$D[B #

)

/

=

=

R

(

&

$!"

)

/

=

=

R

(

SD."& DB E% & K@ X U " E6. &

KD0aQ )@j

"

)

/

=

=

R

(

$!" D #

)

/

=

=

R

(

$a

D(< #

)

/

=

=

R

(

$[B &

)

/

=

=

R

(

ED% & l [^ E6. &

$!" K[."

)

h

/

=

=

R

(

)

2 &P .

.

A aL

J

9&)DQ 3" K

)

(

$D+ uND +

DO." E6D. )DF .

'3")!"

K. 0 A 3 B ')F

62

& K D;."& D6€ + A" @1

KD. *!P E%

& n D. W ,D;! E6D6, ` D\ Ci D;+ D6€ + A" D@1

@O+

$

$! 6% 2 g." AP ")i+ E 6. K

" Q&

"

U " E6. ')F &P .

$+ ') B E% & C X

F

)

9&)DQ

.(

X DU " E6D. A 6% 2 ` " \ E n . $ @ 3 7 K! 2

)D@j S."& B E% & C

KD0aQ

"

)

h

/

=

=

R

(

$D[B #

)

Vh

/

=

=

R

(

$ a! &

)

V

/

=

=

R

(

ED% & l D [^ E6. &

$!" S."&

)

Vh

/

=

=

R

(

$ a! #

)

VV

/

=

=

R

(

KD0aQ )@j #

"

)

V

/

=

=

R

(

$DD[B &

)

V

/

=

=

R

(

)DD

2 &P DD.

.

` DD\

CD> I SD."& KD60 B E% & K@ X U " E6. A 6% 2

/

=

-

=

/

=

=

R

.

K

)+P %

.

'3")!" O." E6. $ @ 3 7

DB C X U " ')F

62

K. l [^ &

A" @1

6€ +

D6€ + A" @1 K. *!P E% & K ;."& L

` \ #Ci ;+

$@O+ & n . E66,

" DQ&

"

$< DI

KD

K. K@ X U " E6,, ` \ ")i+

ED% & K D;."& D6€ + A" @1

K.

%" E6 Ci ;+ 6€ + A" @1

)

9&)Q

.(

K. K! 2 & L

` D\ A"GD6+ E D a $D @ 3 7 'r &

A D B KD@ X U " K. m . + E% &

B O." E6. A 6% 2

%"

.

c L

K. A

KB F g[^ 'r &

DB l D $@6 D DL

KD. G,D% DH A B

")*(! 7 60a1 3" $8

D, 3 DY@+

KB DF )DF 9 D @ D & D*!P 3 D%

3"

62 DD0Q D*Q DL

*F 7"G6* & )+P &

" . $< a I" aI"G+

D%"

B K@ X U " & E " 3"

3" $O. D # *!P $O6,J )F . '&_1

a1

$+ G6! A B

")*(! &

F" 7 60

)F .

)

&

.(

$01

E " ?-

#$D @ 3 7 D & D0 A 3 K! 2& L K

9)D+ $( D;."& ` " \ E n .

WD,< - #CD> I gD." & DL

K0aQ )@j X ! g." K. m . +

$ a! & $[B # "

)

D6- $O." D

$a

(< g." 3"

(

R6 " . Q& E " . .

.

)DF A"GD6+ $@6

Downloaded from jcpp.iut.ac.ir at 13:57 IRDT on Wednesday May 3rd 2017

background image

-

,

h6

2/13 ( 4 % 0 5

./ 0 1

h16

=

X

)

.

:

MSE

;

R

F F

J Y

MC H

)

lMT1U V1

x

(

6 N L :M9 N L l

' 1

-

Q RS

)

l 1U V1

y

(

./ 0 1 (

R

2

MSE

b

a

9)+

)

K< O+

(

K< O+ X !

./

=

V

/

h

/

V

h

/

y =

h

/

x +

h

/

V

$[B

hV

/

=

h

/

=

-

V

/

y =

V

/

Ln (x) –

h

/

=

$a

(<

/

=

/

/

=

y =

/

=

x +

/

x +

=

/

" K0aQ )@j

E% & C X U "

/

=

/

=

/

y =

/

x

/

=

$!"

hh

/

=

h

/

=

h

/

=V

y =

h

/

=V

e

h

/

=

x

$ a!

/

=

/

/

V

/

y =

V

/

x +

h

/

$[B

V

/

=

V

/

-

h

/

h=

y =

h

/

h=

Ln (x) –

V

/

$a

(<

/

=

V

/

/

-

y = -

h

/

x +

V

/

x –

h=

/

" K0aQ )@j

& K@ X U "

E%

/

=

V

/

=

/

y =

/

x

V

/

=

$!"

/

=

/

=

VV

/

y =

VV

/

e

/

=

x

$ a!

V

/

=

/

=

h

/

-

VV

/

V

y =

VVV

/

V

x –

h

/

V

$[B

V

/

=

V

/

h

-

/

y =

/

Ln (x) –

V

/

h

$a

(<

V

/

=

h

/

-

y = -

h h

/

x

2

+

==

/

x –

V

/

h

" K0aQ )@j

E%& l [^

h

/

=

/

=

/

=

y =

=

/

=

x

/

$!"

V

/

=

= h

/

V

/

y =

V

/

e

= h

/

=

x

$ a!

X

;

.

:

MSE

;

R

F F

J Y

MC H

)

lMT1U V1

x

(

6 N L :M9 N L l ' 1

-

Q RS

)

l 1U V1

y

(

16

(

R

2

MSE

b

a

9)+

)

K< O+

(

K< O+ X !

Vh

/

=

/

/

h

h

/

y

=

h

/

x +

/

h

$[B

=

/

=

/

/

V

y =

/

V

Ln (x) +

/

(<

$a

h

/

=

/

=

/

y =

=

/

x –

/

x +

/

h

K0aQ )@j

"

E% & C X U "

/

=

Vh

V

/

=

y =

V

/

=

x

Vh

/

=

$!"

V

/

=

=

=

/

=

y =

=

/

=

e

=

x

a!

$

/

=

h

/

h

/

/

y =

/

x +

h

/

$[B

=

/

=

=h

/

V=

/

y =

V=

/

Ln (x) +

=h

/

(<

$a

/

=

V

/

V

/

=

-

y =

/

=

-

x +

V

/

V

x +

VV

/

=

K0aQ )@j

"

E% & K@ X U "

/

=

h

/

=

h

/

y =

h

/

x

h

/

=

$!"

/

=

X

=

/

=

/

y =

/

e

=

/

=

x

!

a

$

V

/

=

h

/

V

=

/

h

h

/

y =

h

/

x +

=

/

h

$[B

/

=

h

/

=

-

/

h

y =

/

h

Ln (x) –

h

/

=

(<

$a

V

/

=

=h

/

h

hVV

/

=

y =

hVV

/

=

x +

=h

/

h

x +

/

K0aQ )@j

"

E% & l [^

Vh

/

=

V h

/

=

/

y =

/

x

V h

/

=

$!"

VV

/

=

/

=

/

VV

y =

/

VV

e

/

=

x

a!

$

Downloaded from jcpp.iut.ac.ir at 13:57 IRDT on Wednesday May 3rd 2017

background image

/

!"

/

# $%

&'( !"

/

)*+*

=

y = 264.37Ln(x) - 105.98
R

2

= 0.8664

0

100

200

300

400

500

600

700

800

900

0

2

4

6

8

10

12

14

16

(

)

(

)

MB%

)

.

./ 0 1 ( ED ( F N L F $1 O

J Y ( $

y = 80.185Ln(x) - 1.9574
R

2

= 0.6682

0

50

100

150

200

250

300

0

2

4

6

8

10

12

14

16

(

)

(

)

MB%

;

.

./ 0 1 ( ED ( F

6 N L F $1 O

J Y ( $

'3")D!" O."

9)D+ #fD0 N+ E6@D% ')DF

D62

gD." & DL

K. $a

(<

)+ A" @1

9

R6 `% @+ & ') G2 . L

DL $D@6.

)!)F Z N !" K! 2 &

.

X U " #C X U " )F 9)+ & (<"

KD@

?L &

$08DF K. $ @ 3 7 & 0 A 3 A B l [^ E6@j

K0aQ )@j & $[B g." 3" ' U %" . K

%"

"

&)DI &

R6 $!"

KD. $< D,^ CD. ^ & o6TD> $@6.

)D+P )DL" N! D%

K.

J

9)+ E " K

K. A B E% R "G " . L

E6@D% 'rD &

n DD.

)

&)DDI

n DD. & 9 DD%

(

R6DD

$ n DD. 6DD;. $DD@6.

)

Overestimate

(

S " DDF W_Da1 KD )DD! " DB DO." 3"

ED% AP O." E6@j . $! B $O6,J

ED " &

")D! DQ&

9)+

R6 *Q g." & L

)F

(<" $@6.

KD. A D B ED "

)@ ;6! 9 ,^ C. ^ $a01 ‚ T<

)

.(

3"

$DB . K. X Q . $ J

&

6O\& K. KQ . $a

(< 9)+ #K. + 7n i+ & 7 i6iT

9)D+ A" D@1 KD. l [^ & K@ X U " #C X U " )F

(<"

R6 *Q 9 ,^ C. ^

fD0 N+ E6@D% O." E " )F $@6.

F $+ K 2 Y!

)

,

&

(

.

C8F

L

)

-

(

&

)

-

(

K.

6

@T@+ ')@L A ! `

$

% 2 K."

6

(< A

a

$

.6

DO." E

3 KD! 2 & ED% & )DF f0 N+

3 7 D & D0 A D

D @

$

+

$

)F .

.

K. $a

(< 7n O+ 3" ' U %" .

KD! 2 L " . ')+P %

'3")!" O." )F A"G6+

')F

62

)

" #C X U "

D[^ & K@ X U

l

(

E6@%

=

#

&

=

R6 9 %

)!)DF $@6.

)

9&)DQ

.(

R6

E6@% C^")I O." $@6.

=

&

$DO^"& DO." KD. 9 %

)@ ;L v G! 6;. E6@% E " A B

.

K!n D% )F 1 %

Downloaded from jcpp.iut.ac.ir at 13:57 IRDT on Wednesday May 3rd 2017

background image

-

,

h6

2/13 ( 4 % 0 5

./ 0 1

h16

=

y = 352.96Ln(x) - 204.45
R

2

= 0.8008

0

100

200

300

400

500

600

700

800

900

1000

1100

0

2

4

6

8

10

12

14

16

(

)

(

)

MB%

*

.

./ 0 1 ( ED ( F Q RS F $1 O

J Y ( $

y = 157.61Ln(x) + 14.326
R

2

= 0.6027

0

100

200

300

400

500

600

700

0

2

4

6

8

10

12

14

16

(

)

(

)

B%

M

?

.

16

( ED ( F N L F $1 O

J Y ( $

E% 0 A 3 B C X U "

$D "G " )!& $(< %

E6@% +" K F"

h

-

AP 3" sD $D<& KD RL D $(< D%

$+ $

) R "G " K. & W" ) +

" 2

.

KD@ X U " )F 1 %

E%

& R "G " $(< %

K. AP 3" s

J

RL D KD. & $D0

+" " 2 $+

KDYI_+ CD. ^ R "G " l [^ )F 1 %

" "

K.

E% 'r &

$+ A ! $(< %

$,D;! J AP 3" s $<& )L

$+ RL K. &

" 2

.

K.

J

$+ $0

ED% R "G " . U2 A"

&)I

9 D% K.

,;! K! 2 E " )F 1 % $(< %

DL

K6<&"

$+ A ! R "G " )F

)L

.

K.

J

DO." )DF 1 % $0

'3")!"

D. $ @ 3 7 B l [^ & K@ X U " ')F

62

$+ R "G " E% R "G "

v )@j L ).

3 D. & uND + KU^&

E6@%

-

?D j KD. KD@ X DU " )DF 1 D% $(< D%

$+

$+ K

B

)+ „ % K. m . + )!"

)F . $ L

)F K

6…z T " K@ $< J

$+ " ^

D[^ )F 1 % K " j )@L

$+ A ! " $O % $ "G " )!& A @j ?L E% E " l

)L

&

")D! $DaY@+ )D!& DB CD X U " )F 1 % +"

$+ ')L + f0 N+ E6@% AP R "G " & RL

F

)

9&)DQ

.(

A aL

9&")Q K

J

&

$+ A !

KD! 2 & DL )DL

. K; i+ E% R "G " . l [^ )F 1 %

)DF 1 %

ED " KD. AP D01 ) DF KD %" 6. K@ X U " & C X U "

&)DI D ED% R "GD " D. K )F . C6<

A D B $(< D%

E;+

')DF vD G! B $1 U " & $< J )F q ")I K.

)D!"

$< I

;2 & $,! Q )F K

?DL DB l

KD+" " A D@j

"

)

.(

Downloaded from jcpp.iut.ac.ir at 13:57 IRDT on Wednesday May 3rd 2017

background image

/

!"

/

# $%

&'( !"

/

)*+*

=

y = 186.91Ln(x) - 40.284
R

2

= 0.6472

0

100

200

300

400

500

600

700

800

0

2

4

6

8

10

12

14

16

(

)

(

)

MB%

d

.

16

( ED ( F Q RS F $1 O

J Y ( $

X

*

.

, -

F 6 ( Q RS

6 N L :M9 N L 6

)`

:

)d

*`

16

./ 0 1 (

$1 O # % \

m

l [^

)

+

(

K@ X U "

)

+

(

C X U "

)

+

(

K! 2

=

9 %

9 %

=

9 %

=

9 %

9 %

=

9 %

=

9 %

9 %

=

9 %

/

/

V

/

V

/

/

h

/

/

V

=h

/

=

/

0 A 3

/

/

=

/

/

=

/

h

/

=

/

/

VV

/

$ @ 3 7

X

?

.

% E

F O

' # % 7

Q RS

6 N L :M9 N L

;

./ 0 1 ED ( ( 7B

l [^

)

mm

(

K@ X U "

)

mm

(

C X U "

)

mm

(

E%

==

=

=

-

=

=

V =

V

-

==

=

-

V

=

=

h

-

=

=

=

=

-

h

V

V

h

-

=

h

V

V

-

Downloaded from jcpp.iut.ac.ir at 13:57 IRDT on Wednesday May 3rd 2017

background image

-

,

h6

2/13 ( 4 % 0 5

./ 0 1

h16

=V

X

d

.

' # % 7

Q RS

6 N L :M9 N L

% E

F O

;

16

ED ( ( 7B

l [^

)

mm

(

K@ X U "

)

mm

(

C X U "

)

mm

(

E%

V=

==

-

=

V

-

=

=

=

-

=

V=

h

-

h=

V

=

-

h

V

-

=

h=

=

h==

-

AP

DL K %" E " %" uN + 9&")Q & x ! 3" Kj

KD. $ n D. W ,;! )F 1 % $ @ 3 7 & 0 A 3 K! 2 &

E6@D% D C^")DI l D KOD% &

;2 Y! 3" 'r &

-

*. $@O G,% )F 9 M AP 3& . &

*{ K )! " $(< %

A ;. &

uN +

K. &

%"

J

D W ,D;! A B &GQ $0

$D+ Z ;I K. G,% H )F

)D@ P

.

9)D+ 3" ' U D%"

& DL

)DF

D(<" A D $Da D( $! D6. KD. & $\ g."

" A D8+" ED " G,D% DH A" )+ & A I" J K. $ @ 3 A B

$+

E6@D% " DB fD0 N+ DO." )DF 1 D% KD )L

f0 N+

R6

o6T>

M & )@@ $@6.

$O^"& &

H 3"

)@DF . K F" ')@ P ')F $I" J G,%

.

9)D+ ED "

gD." & DL

CDDq+ G,DD% DDH DDL "G " / DD! ' U DD%" DD60. ^

CAD

(Computer Aided Design software)

EDD " KDD. & )DD! " "

< D 6

7 > K. f0 N+ E6@% B )F 66€ `6

$

K6,F G6!

M &

$+ 3 %

F

)

.(

$ D 7 1_J" E F"

B O." . m , "

)

l D D[^ & KD@ X DU " #C X U "

(

$+

# Da60 & 86+ ,*. #" L $2 <P Z Q A

9)+ " . )!"

& E. Z Q K,% T+

...

S6T+

F K 2 K.

*F L

)

(

.

1_J" E F" . $ J 3"

A 8+" A B O." K. m . + 7

d6^ K,% T+

K@ GL

K+ ! . G6< !P # L

Z D0[+ $

)D+ L

9 %

?L" D

*F ") G,% L H

" b)L . ')@ P L

$+

F

.

9)+ E " va .

)DF 1 D% KDj A D@j gD." & L

A D8+ AP D & ' U %" A 8+" )F . 3 $ B

D. $ DL

H

D6O^ + & 3 .

& g D% G,D% RDF 3 D6! KD $ DL

%" K6> C. ^ F $+ c ;I"

.

?L

D+ E6@j

A D8+ DF K. K6> )F ? A B

L DH D. $ DL

. Cq+ &)T+

' 6 & L " <

A . 6B L&

] 0DF &

L

. )L" B K6Q C. ^

.

Y 6

#( L1 (

1. Brewer, J. A., P. Y. Burns and Q. V. Cao. 1985. Short term Projection accuracy of Ive asymptotic height–age

curves For Loblolly pine. Forest Science 31: 414–418.

2. Du Toit, S. H. C. 1979. Analysis of growth curves. Ph.D. Thesis, University of South Africa, Pretoria, South Africa.
3. Fox, J., H. Bi and P. Ades. 2007. Spatial dependence and individual-tree growth models II. Modeling spatial

dependence, Forest Ecology and Management 245: 20–30.

4. Gerhold, H. D., N. L. Lacasse and W. W. Andel. 1993. Street tree fact sheets. University Park, The Pennsylvania

State University. AGRS-056.

5. Harrison N. A., E. Boa and M. L. Carpio. 2003. Characterization of phytoplasmas detected in Chinaberry trees with

symptoms of leaf yellowing and decline in Bolivia. Plant Pathology 52: 147-157.

6. Hickey M. and C. J. King. 1981. Moraceae, 100 families of flowering plants. Cambridge University Press, London.

Downloaded from jcpp.iut.ac.ir at 13:57 IRDT on Wednesday May 3rd 2017

background image

/

!"

/

# $%

&'( !"

/

)*+*

=h

7. http://www.learner.org/jnorth/tm/leaf/HowOld.html
8. Ishii, H., J. P. Clement and D. C. Shawc. 2000. Branch growth and crown form in old coastal Douglas-fir, Forest

Ecology and Management 131: 81-91.

9. Jalota, R. K., and K. K. Sangha. 2000. Comparative ecological–economic analysis of growth performance of exotic

Eucalyptus tereticornis and indigenous Dalbergia sissoo in mono-culture plantations. Ecological Economics 33:
487–495.

10. Joffe, P. 1993. The gardener’s guide to South African plants. Tafelberg-Uitgewers Beperk, CapeTown.
11. Kirsten, K. E. and L. Meyer. 1992. Keith Kirsten’s complete garden manual for South Africa. Human and Rousseau,

Cape Town.

12. Larsen, F. K. and P. Kristoffersen. 2002. Tilia’s physical dimensions over time. Journal of Arboriculture 25: 209–

213.

13. Peper, P. J., E. G. Mc Pherson and S. M. Mori. 2001a. Predictive equations for dimensions and leaf area of coastal

southern California street trees. Journal of Arboriculture 27: 169–181

14. Peper, P. J., E. G. Mc Pherson and S. M. Mori. 2001b. Equations for predicting diameter, height, crown width and

leaf area Of San Joaquin Valley street trees. Journal of Arboriculture 27: 306–317.

15. Pukkala, T., T. Kolstrom and J. Miina. 1994. A method for predicting tree dimensions in Scots pine and Norway

spruce stands. Forest Ecology and Management 65: 123-134.

16. Simard, S. W., and B. J. Zimonick. 2005. Neighborhood size effects on mortality, growth and Crown morphology

of paper birch. Forest Ecology and Management 214: 251–265.

17. Stoffberg, G.H., M. W. van Rooyen, M. J. van der Linde and H. T. Groeneveld. 2008. Predicting the growth in tree

height and crown size of three street tree species in the city of Tshwane. South Africa Urban Forestry and Urban
Greening
7: 259–264.

18. Teimoori, R., S. Roostaee, A. Akbarizamaneh and M. Ahadinejad. 2010. The evaluation of spatio-temporal

suitability of urban parks using GIS (a case study of area no. 2 neighborhood parks of Tabriz municipality).
Itanian Jornal of Geographic Space 10: 137-168. (In Farsi).

19. Wyckoff, P. H., and J. S. Clark. 2005. Tree growth prediction using size and exposed crown area. Canadian Journal

of Forest Research 35: 13-20.

20. Zhanga, L., H. Bi, P. F. Chenga and C. J. Davis. 2004. Modeling spatial variation in tree diameter–height

relationships. Forest Ecology and Management 189: 317–329.

Downloaded from jcpp.iut.ac.ir at 13:57 IRDT on Wednesday May 3rd 2017


Wyszukiwarka

Podobne podstrony:
Johnsond Carnap, Menger, Popper Explication, Theories Of Dimension, And The Growth Of Scientific
The Growth of?mocracy
Colonization with Arbuscular Mycorrhizal Fungi Promotes the Growth of Morus alba L Seedlings under G
Orning, The Growth of the Medieval Icelandic
The algorithm of solving differential equations in continuous model of tall buildings subjected to c
Differential Heat Capacity Calorimeter for Polymer Transition Studies The review of scientific inst
Good Capitalism, Bad Capitalism, and the Economics of Growth and Prosperity
The comparison of two different forms of?vertisement
24 Variability of the European climate on the basis of differentiation of indicators of continentali
Engle And Lange Predicting Vnet A Model Of The Dynamics Of Market Depth
A THREE DIMENSIONAL ANALYSIS OF THE CENTER OF
Barbara Stallings, Wilson Peres Growth, Employment, and Equity; The Impact of the Economic Reforms
Montag Imitating the Affects of Beasts Interest and inhumanity in Spinoza (Differences 2009)
Dan Sullivan The Laws of Lifetime Growth
Microwave drying characteristics of potato and the effect of different microwave powers on the dried
The comparison of two differnt translation of Oscar Wilde
Slavoj Žižek The Real of Sexual Difference
McAdams Interpreting the Good Life Growth Memories in the Lives of Mature Journal of Personality and
Smart Growth Innovating to Meet the Needs of the Market without Feeding the Beast of Complexity (Kn

więcej podobnych podstron