Econometrics, Lecture 4, 2014 03 11

background image

1. Assumptions of Multiple Regression Model and OLS
2. Goodness of fit:

1. R-squared
2. Adjusted R-squared
3. Information criteria: AIC, BIC

3. F test for regression significance
4. Student’s t test for significance of a parameter

Econometrics, Lecture 4, 2014-03-11

background image

Econometrics, Lecture 4, 2014-03-11

Assumptions of Multiple Regression Model and

OLS

Consequences:
A – parameter estimates are wrong
B – standard errors of OLS estimator are wrong
C – probability distributions of test statistics are

different than specified

background image

Econometrics, Lecture 4, 2014-03-11

Assumptions of Multiple Regression Model and

OLS

Assumption

What if false?

Consequenc

e

Model equation is true

- functional form of equation is correct

wrong functional form

A

- parameters are constant over

population

instability of parameters

A

- no important variable is missing

omitted variables

problem

A

- there are no unnecessary variables

insignificant variables

problem

B

rk(X) = K, K < n

perfect

multicolinearity

not possible to

estimate

param.

near multicolinearity

B

background image

Econometrics, Lecture 4, 2014-03-11

Assumptions of Multiple Regression Model and

OLS

Assumption

What if false?

Consequenc

e

error term carries

systematic

information on

dependent variable

A

error term carries

information on

independent variables

A

heteroskedasticity –

variance of error term

is not constant

B, C

autocorrelation –

elements of error term

vector are correlated

B, C

 

0

E

 

0

T

X

E

 

I

Var

2

background image

Possible combinations of F and Student’s t tests

results:

Test results

Conflict?

Reject H

0

in F test and reject H

0

for

all independent variables in
Student’s t test

No

Reject H

0

in F test and reject H

0

for

some independent variables in
Student’s t test

No

Reject H

0

in F test and do not

reject H

0

for any independent

variable in Student’s t test

Yes

Do not reject H

0

in F test and do not

reject H

0

for any independent

variable in Student’s t test

No

Do not reject H

0

in F test and reject

H

0

for at least one independent

variable in Student’s t test

Yes

Econometrics, Lecture 4, 2014-03-11


Document Outline


Wyszukiwarka

Podobne podstrony:
Econometrics, Lecture 5, 2014 03 18
Econometrics, Lecture 3, 2014 03 04
dp 589 wstrzas2012 (czyli 2014 03 11)
dp 589 wstrzas2012 (czyli 2014 03 11)
Econometrics, Lecture 2, 2014 02 25
Econometrics, Lecture 1, 2014 02 18
2014 03 02 11 42 15 01
2014 03 02 11 45 08 01
2014 03 02 11 01 14 01
2014 03 02 11 50 58 01id 28533 Nieznany
2014 03 02 11 43 30 01id 28527 Nieznany
2014 03 02 11 36 19 01id 28523 Nieznany
2014 03 02 11 49 41 01
2014 03 02 11 52 24 01
2014 03 02 11 31 51 01
2014 03 02 11 46 47 01id 28529 Nieznany
2014 03 02 11 48 26 01id 28531 Nieznany
2014 03 02 11 11 33 01id 28517 Nieznany
2014 03 02 11 25 06 01

więcej podobnych podstron