ch4


Chapter Four
Integration
4.1. Introduction. If Lð : D ¸ð C is simply a function on a real interval D =ð ßðJð, KðÄ…ð , then the

integral Xð LðÅ»ðtÞðdt is, of course, simply an ordered pair of everyday 3rd grade calculus

integrals:
Kð Kð Kð
LðÅ»ðtÞðdt =ð xÅ»ðtÞðdt +ð i yÅ»ðtÞðdt,
Xð Xð Xð
Jð Jð Jð
where LðÅ»ðtÞð =ð xÅ»ðtÞð +ð iyÅ»ðtÞð. Thus, for example,
1
4 i
Å»ðt2 +ð 1Þð +ð it3 dt =ð +ð .
Xðßð Ä…ð
3 4
0
Nothing really new here. The excitement begins when we consider the idea of an integral
of an honest-to-goodness complex function f : D ¸ð C, where D is a subset of the complex
plane. Let s define the integral of such things; it is pretty much a straight-forward extension
to two dimensions of what we did in one dimension back in Mrs. Turner s class.
Suppose f is a complex-valued function on a subset of the complex plane and suppose a
and b are complex numbers in the domain of f. In one dimension, there is just one way to
get from one number to the other; here we must also specify a path from a to b. Let C be a
path from a to b, and we must also require that C be a subset of the domain of f.
4.1
(Note we do not even require that a ®ð b; but in case a =ð b, we must specify an orientation
for the closed path C.) Next, let P be a partition of the curve; that is, P =ð áðz0, z1, z2, uð , znâð
is a finite subset of C, such that a =ð z0, b =ð zn, and such that zj comes immediately after
zj?ð1 as we travel along C from a to b.
A Riemann sum associated with the partition P is just what it is in the real case:
n
SÅ»ðPÞð =ð fÅ»ðzDðÞðAðzj,

j
j=ð1
where zDð is a point on the arc between zj?ð1 and zj , and Aðzj =ð zj ?ð zj?ð1. (Note that for a
j
given partition P, there are many SÅ»ðPÞð depending on how the points zDð are chosen.) If
j
there is a number L so that given any Pð >ð 0, there is a partition PPð of C such that
SÅ»ðPÞð ?ð L <ð Pð
| |
whenever P Ńð PPð, then f is said to be integrable on C and the number L is called the
integral of f on C. This number L is usually written Xð fÅ»ðzÞðdz.
C
Some properties of integrals are more or less evident from looking at Riemann sums:
cfÅ»ðzÞðdz =ð c fÅ»ðzÞðdz
Xð Xð
C C
for any complex constant c.
4.2
Å»ðfÅ»ðzÞð +ð gÅ»ðzÞðÞðdz =ð fÅ»ðzÞðdz +ð gÅ»ðzÞðdz
Xð Xð Xð
C C C
4.2 Evaluating integrals. Now, how on Earth do we ever find such an integral? Let
Lð : ßðJð, KðÄ…ð ¸ð C be a complex description of the curve C. We partition C by partitioning the
interval ßðJð, KðÄ…ð in the usual way: Jð =ð t0 <ð t1 <ð t2 <ðuð <ð tn =ð Kð. Then
áða =ð LðÅ»ðJðÞð, LðÅ»ðt1Þð, LðÅ»ðt2Þð, uð , LðÅ»ðKðÞð =ð bâð is partition of C. (Recall we assume that LðvðÅ»ðtÞð ®ð 0
for a complex description of a curve C.) A corresponding Riemann sum looks like
n
SÅ»ðPÞð =ð fÅ»ðLðÅ»ðtDðÞðÞðÅ»ðLðÅ»ðtjÞð ?ð LðÅ»ðtj?ð1ÞðÞð.

j
j=ð1
We have chosen the points zDð =ð LðÅ»ðtDðÞð, where tj?ð1 ²ð tDð ²ð tj. Next, multiply each term in the
j j j
sum by 1 in disguise:
n
LðÅ»ðtjÞð ?ð LðÅ»ðtj?ð1Þð
SÅ»ðPÞð =ð fÅ»ðLðÅ»ðtDðÞðÞðÅ»ð

j
tj ?ð tj?ð1 ÞðÅ»ðtj ?ð tj?ð1Þð.
j=ð1
I hope it is now reasonably convincing that  in the limit , we have

fÅ»ðzÞðdz =ð fÅ»ðLðÅ»ðtÞðÞðLðvðÅ»ðtÞðdt.
Xð Xð
C

(We are, of course, assuming that the derivative Lðvð exists.)
Example
We shall find the integral of fÅ»ðzÞð =ð Å»ðx2 +ð yÞð +ð iÅ»ðxyÞð from a =ð 0 to b =ð 1 +ð i along three
different paths, or contours, as some call them.
First, let C1 be the part of the parabola y =ð x2 connecting the two points. A complex
description of C1 is Lð1Å»ðtÞð =ð t +ð it2, 0 ²ð t ²ð 1:
4.3
1
0.8
0.6
0.4
0.2
0
0.2 0.4 0.6 0.8 1
x
Now, Lðvð Å»ðtÞð =ð 1 +ð 2ti, and fÅ»ð Lð1Å»ðtÞðÞð =ð Å»ðt2 +ð t2Þð +ð itt2 =ð 2t2 +ð it3. Hence,
1
1
fÅ»ðzÞðdz =ð fÅ»ð Lð1Å»ðtÞðÞðLðvð Å»ðtÞðdt
Xð Xð
1
C1 0
1
=ð Å»ð2t2 +ð it3ÞðÅ»ð1 +ð 2tiÞðdt

0
1
=ð Å»ð2t2 ?ð 2t4 +ð 5t3iÞðdt

0
4 5
=ð +ð i
15 4
Next, let s integrate along the straight line segment C2 joining 0 and 1 +ð i.
1
0.8
0.6
0.4
0.2
0 0.2 0.4 0.6 0.8 1
x
Here we have Lð2Å»ðtÞð =ð t +ð it, 0 ²ð t ²ð 1. Thus, Lðvð Å»ðtÞð =ð 1 +ð i, and our integral looks like
2
4.4
1
fÅ»ðzÞðdz =ð fÅ»ð Lð2Å»ðtÞðÞðLðvð Å»ðtÞðdt
Xð Xð
2
C2 0
1
=ð Å»ðt2 +ð tÞð +ð it2 Å»ð1 +ð iÞðdt
Xðßð Ä…ð
0
1
=ð ßðt +ð i t +ð 2t2 Ä…ðdt
Xð Å»ð Þð
0
1 7
=ð +ð i
2 6
Finally, let s integrate along C3, the path consisting of the line segment from 0 to 1
together with the segment from 1 to 1 +ð i.
1
0.8
0.6
0.4
0.2
0
0.2 0.4 0.6 0.8 1
We shall do this in two parts: C31, the line from 0 to 1 ; and C32, the line from 1 to 1 +ð i.
Then we have
fÅ»ðzÞðdz =ð fÅ»ðzÞðdz +ð fÅ»ðzÞðdz.
Xð Xð Xð
C3 C31 C32
For C31 we have LðÅ»ðtÞð =ð t, 0 ²ð t ²ð 1. Hence,
1
1
fÅ»ðzÞðdz =ð dt =ð .
Xð Xð
3
C31 0
For C32 we have LðÅ»ðtÞð =ð 1 +ð it, 0 ²ð t ²ð 1. Hence,
1
1 5
fÅ»ðzÞðdz =ð Å»ð1 +ð t +ð itÞðitdt =ð ?ð +ð i.
Xð Xð
3 6
C32 0
4.5
Thus,
fÅ»ðzÞðdz =ð fÅ»ðzÞðdz +ð fÅ»ðzÞðdz
Xð Xð Xð
C3 C31 C32
5
=ð i.
6
Suppose there is a number M so that fÅ»ðzÞð ²ð M for all zOðC. Then
| |

fÅ»ðzÞðdz =ð fÅ»ðLðÅ»ðtÞðÞðLðvðÅ»ðtÞðdt
Xð Xð
C


²ð fÅ»ðLðÅ»ðtÞðÞðLðvðÅ»ðtÞð dt
|
Xð |


²ð M LðvðÅ»ðtÞð dt =ð ML,
| |



where L =ð Xð LðvðÅ»ðtÞð dt is the length of C.
| |

Exercises
1. Evaluate the integral Xð zdz, where C is the parabola y =ð x2 from 0 to 1 +ð i.
C
1
2. Evaluate Xð dz, where C is the circle of radius 2 centered at 0 oriented
z
C
counterclockwise.
4. Evaluate Xð fÅ»ðzÞðdz, where C is the curve y =ð x3 from ?ð1 ?ð i to 1 +ð i , and
C
1 for y <ð 0
fÅ»ðzÞð =ð .
4y for y Å‚ð 0
5. Let C be the part of the circle LðÅ»ðtÞð =ð eit in the first quadrant from a =ð 1 to b =ð i. Find as
4
small an upper bound as you can for XðCÅ»ðz2 ?ð z +ð 5Þðdz .
4.6
6. Evaluate Xð fÅ»ðzÞðdz where fÅ»ðzÞð =ð z +ð 2 z and C is the path from z =ð 0 to z =ð 1 +ð 2i
C
consisting of the line segment from 0 to 1 together with the segment from 1 to 1 +ð 2i.
4.3 Antiderivatives. Suppose D is a subset of the reals and Lð : D ¸ð C is differentiable at t.
Suppose further that g is differentiable at LðÅ»ðtÞð. Then let s see about the derivative of the
composition gÅ»ðLðÅ»ðtÞðÞð. It is, in fact, exactly what one would guess. First,
gÅ»ðLðÅ»ðtÞðÞð =ð uÅ»ðxÅ»ðtÞð, yÅ»ðtÞðÞð +ð ivÅ»ðxÅ»ðtÞð, yÅ»ðtÞðÞð,
where gÅ»ðzÞð =ð uÅ»ðx, yÞð +ð ivÅ»ðx, yÞð and LðÅ»ðtÞð =ð xÅ»ðtÞð +ð iyÅ»ðtÞð. Then,
dy dy
d /ðu dx /ðu /ðv dx /ðv
gÅ»ðLðÅ»ðtÞðÞð =ð +ð +ð i +ð .
dt /ðx dt /ðy dt /ðx dt /ðy dt
The places at which the functions on the right-hand side of the equation are evaluated are
obvious. Now, apply the Cauchy-Riemann equations:
dy dy
d /ðu dx /ðv /ðv dx /ðu
gÅ»ðLðÅ»ðtÞðÞð =ð ?ð +ð i +ð
dt /ðx dt /ðx dt /ðx dt /ðx dt
dy
/ðu /ðv dx
=ð +ð i +ð i
/ðx /ðx dt dt
=ð gvðÅ»ðLðÅ»ðtÞðÞðLðvðÅ»ðtÞð.
The nicest result in the world!
Now, back to integrals. Let F : D ¸ð C and suppose FvðÅ»ðzÞð =ð fÅ»ðzÞð in D. Suppose moreover
that a and b are in D and that C Ðð D is a contour from a to b. Then

fÅ»ðzÞðdz =ð fÅ»ðLðÅ»ðtÞðÞðLðvðÅ»ðtÞðdt,
Xð Xð
C

where Lð : ßðJð, KðÄ…ð ¸ð C describes C. From our introductory discussion, we know that
d
FÅ»ðLðÅ»ðtÞðÞð =ð FvðÅ»ðLðÅ»ðtÞðÞðLðvðÅ»ðtÞð =ð fÅ»ðLðÅ»ðtÞðÞðLðvðÅ»ðtÞð. Hence,
dt
4.7

fÅ»ðzÞðdz =ð fÅ»ðLðÅ»ðtÞðÞðLðvðÅ»ðtÞðdt
Xð Xð
C


d
=ð FÅ»ðLðÅ»ðtÞðÞðdt =ð FÅ»ðLðÅ»ðKðÞðÞð ?ð FÅ»ðLðÅ»ðJðÞðÞð

dt

=ð FÅ»ðbÞð ?ð FÅ»ðaÞð.
This is very pleasing. Note that integral depends only on the points a and b and not at all
on the path C. We say the integral is path independent. Observe that this is equivalent to
saying that the integral of f around any closed path is 0. We have thus shown that if in D
the integrand f is the derivative of a function F, then any integral Xð fÅ»ðzÞðdz for C Ðð D is path
C
independent.
Example
1 i
Let C be the curve y =ð from the point z =ð 1 +ð i to the point z =ð 3 +ð . Let s find
9
x2
z2dz.

C
1
This is easy we know that FvðÅ»ðzÞð =ð z2 , where FÅ»ðzÞð =ð z3. Thus,
3
3
1 i
z2dz =ð 1 +ð i ?ð 3 +ð
Xð Å»ð Þð3
3 9
C
260 728
=ð ?ð ?ð i
27 2187
Now, instead of assuming f has an antiderivative, let us suppose that the integral of f
between any two points in the domain is independent of path and that f is continuous.
Assume also that every point in the domain D is an interior point of D and that D is
connected. We shall see that in this case, f has an antiderivative. To do so, let z0 be any
point in D, and define the function F by
FÅ»ðzÞð =ð fÅ»ðzÞðdz,

Cz
where Cz is any path in D from z0 to z. Here is important that the integral is path
independent, otherwise FÅ»ðzÞð would not be well-defined. Note also we need the assumption
that D is connected in order to be sure there always is at least one such path.
4.8
Now, for the computation of the derivative of F:
FÅ»ðz +ðAðzÞð ?ð FÅ»ðzÞð =ð fÅ»ðsÞðds,

LAðz
where LAðz is the line segment from z to z +ðAðz.
1
Next, observe that Xð ds =ð Aðz. Thus, fÅ»ðzÞð =ð Xð fÅ»ðzÞðds, and we have
Aðz
LAðz LAðz
FÅ»ðz +ðAðzÞð ?ð FÅ»ðzÞð
1
?ð fÅ»ðzÞð =ð fÅ»ðsÞð ?ð fÅ»ðzÞð ds.
Xð Å»ð Þð
Aðz Aðz
LAðz
Now then,
1 1
fÅ»ðsÞð ?ð fÅ»ðzÞð ds ²ð Aðz max fÅ»ðsÞð ?ð fÅ»ðzÞð : sOðLAðz
Xð Å»ð Þð | | áð| | âð
Aðz Aðz
LAðz
²ð max fÅ»ðsÞð ?ð fÅ»ðzÞð : sOðLAðz .
áð| | âð
We know f is continuous at z, and so lim max fÅ»ðsÞð ?ð fÅ»ðzÞð : sOðLAðz =ð 0. Hence,
áð| | âð
Aðz¸ð0
FÅ»ðz +ðAðzÞð ?ð FÅ»ðzÞð
1
lim ?ð fÅ»ðzÞð =ð lim fÅ»ðsÞð ?ð fÅ»ðzÞð ds
Xð Å»ð Þð
Aðz Aðz
Aðz¸ð0 Aðz¸ð0
LAðz
=ð 0.
4.9
In other words, FvðÅ»ðzÞð =ð fÅ»ðzÞð, and so, just as promised, f has an antiderivative! Let s
summarize what we have shown in this section:
Suppose f : D ¸ð C is continuous, where D is connected and every point of D is an interior
point. Then f has an antiderivative if and only if the integral between any two points of D is
path independent.
Exercises
7. Suppose C is any curve from 0 to ^ð +ð 2i. Evaluate the integral
z
cos dz.

2
C
1
8. a)Let FÅ»ðzÞð =ð log z, 0 <ð arg z <ð 2^ð. Show that the derivative FvðÅ»ðzÞð =ð .
z
^ð 7^ð 1
b)Let GÅ»ðzÞð =ð log z, ?ð <ð arg z <ð . Show that the derivative GvðÅ»ðzÞð =ð .
z
4 4
c)Let C1 be a curve in the right-half plane D1 =ð áðz : Re z Å‚ð 0âð from ?ði to i that does not
pass through the origin. Find the integral
1
dz.

z
C1
d)Let C2 be a curve in the left-half plane D2 =ð áðz : Re z ²ð 0âð from ?ði to i that does not
pass through the origin. Find the integral.
1
dz.

z
C2
9. Let C be the circle of radius 1 centered at 0 with the clockwise orientation. Find
1
dz.

z
C
10. a)Let HÅ»ðzÞð =ð zc,?ð^ð <ð arg z <ð ^ð. Find the derivative HvðÅ»ðzÞð.
^ð 7^ð
b)Let KÅ»ðzÞð =ð zc, ?ð <ð arg z <ð . What is the largest subset of the plane on which
4 4
HÅ»ðzÞð =ð KÅ»ðzÞð?
c)Let C be any path from ?ð1 to 1 that lies completely in the upper half-plane. (Upper
4.10
half-plane =ð áðz : Imz Å‚ð 0âð.) Find
FÅ»ðzÞðdz,

C
where FÅ»ðzÞð =ð zi, ?ð^ð <ð arg z ²ð ^ð.
11. Suppose P is a polynomial and C is a closed curve. Explain how you know that
Xð PÅ»ðzÞðdz =ð 0.
C
4.11


Wyszukiwarka

Podobne podstrony:
ch4 (4)
ch4 (9)
ch4
CH4 Nieznany
ch4
Cisco2 ch4 Focus
0472113038 ch4
Cisco2 ch4 Concept
ch4 (2)
ch4 tsh2
ch4 (14)
ch4 tsh4
Ch4
CH4 (5)
ch4 tsh4
ch4 (13)
ch4 tsh2

więcej podobnych podstron