triethylamine eros rt217


TRIETHYLAMINE 1
The steric nature of the amine affects the overall performance of
the oxidations. In comparative studies involving oxidations with
Dimethyl Sulfoxide Trifluoroacetic Anhydride5 and Dimethyl
Triethylamine Sulfoxide Methanesulfonic Anhydride6 the sterically hindered
Diisopropylethylamine was found to be superior to TEA (eq 4).3b
Et3N CHO
O3, MeOH Et3N
CH2Cl2 Ac2O
[121-44-8] C6H15N (MW 101.22)
90%
InChI = 1/C6H15N/c1-4-7(5-2)6-3/h4-6H2,1-3H3 CH(OMe)OOH
InChIKey = ZMANZCXQSJIPKH-UHFFFAOYAU
CHO
(tertiary amine base used in oxidation, dehydrohalogenation, and (1)
substitution reactions)
CO2Me
Alternate Name: TEA.
ć% ć%
CH(OMe)2
Physical Data: bp 88.8 C; mp -115 C; d 0.726 g cm-3.
Et3N
Solubility: sol most organic solvents.
Purification: dried over CaSO4, LiAlH4, 4Å sieves, CaH2, KOH, Ac2O
92%
or K2CO3, then distilled from BaO, sodium, P2O5 or CaH2.1
CO2Me
Handling, Storage, and Precautions: is a corrosive and
CH(OMe)2
flammable liquid. Bottles of triethylamine should be flushed
with nitrogen or argon to prevent exposure to carbon dioxide.
O3, MeOH
(2)
The vapors are harmful and care should be taken to avoid ab-
TsOH, CH2Cl2
sorption through the skin. Use in a fume hood.
CH(OMe)OOH
CH(OMe)2
NaHCO3
Introduction. The most widely used organic amine base in
Me2S
synthetic organic chemistry is probably triethylamine. Its popu-
90%
larity stems from availability and low cost, along with ease of CHO
ć%
removal by distillation due to a mid-range boiling point (88.8 C).
+
Also, the hydrochloride and hydrobromide salts are somewhat +
R O Me
R O Me
Et3N
S S
insoluble in organic solvents, such as diethyl ether, and may be
H H
H H2C H CH2

removed by simple filtration. Triethylamine finds wide use in ox-
H
idations, reductions, eliminations, substitutions, and addition re-
actions. There follows a brief compilation of the uses of triethyl-
O (3)
R + Me2S
amine.
DMSO, (MeSO2)2O
( )8 OH
( )8 O (4)
Oxidations. The addition of triethylamine and Acetic Anhy- base
dride during the workup of the ozonolysis of cycloalkenes al-
lows for the selective differentiation of the oxidized termini.2
Base Yield (%)
Ozonolysis of cycloalkenes in MeOH buffered with NaHCO3
Et3N 68
generates the intermediate Ä…-methoxy hydroperoxide aldehyde
94
DIPEA
which dehydrates upon exposure to acetic anhydride and triethy-
lamine to produce aldehyde esters (eq 1). Intermediate peroxy
The treatment of vicinal diols with an excess of
acetals are produced with the addition of p-Toluenesulfonic Acid
DMSO/trifluoroacetic anhydride followed by basification
to the ozonolysis reaction and similarly dehydrate with triethy-
with TEA results in complete oxidation to Ä…-diketones in good
lamine and acetic anhydride to afford acetal esters. Omitting the
yields (eq 5).7
acetic anhydride and triethylamine leads to acetal aldehydes under
Br Br
reduction conditions (eq 2).
Br Br
In the Swern oxidation3 of alcohols to ketones and aldehydes,
1. DMSO, TFAA
OH O
(5)
employing Dimethyl Sulfoxide Oxalyl Chloride, triethylamine is
Et3N
68%
usually the amine base utilized in the basification step of the re-
OH O
action. Mechanistically, the basification step includes deprotona-
tion of the methyl group of the alkoxysulfonium salt intermediate
to form an ylide which then yields the carbonyl compound via
Eliminations. Dehydrohalogenation of alkyl halides to gen-
an intramolecular proton transfer (eq 3).3b A similar mechanism
erate alkenes is normally carried out using alcoholic Potassium
is encountered with N-Chlorosuccinimide Dimethyl Sulfide and
Hydroxide; however triethylamine has some utility.8 For exam-
TEA.4
ple, bridgehead enones are produced efficiently by treatment of
Avoid Skin Contact with All Reagents
2 TRIETHYLAMINE
ć%
²-bromo ketones with 2 equiv of TEA at 0 C. The highly reactive ²-lactams16 using stereo- and enantioselective ketene imine cy-
enones are not isolated (due to their instability) but can be subse- cloaddition methodology. For example, the diastereoselective
quently trapped with a variety of dienes in a Diels Alder reaction Staudinger [2 + 2] ketene imine cycloaddition reaction17 between
(eq 6).9 chiral nonracemic oxazolidinone-N-acetyl chlorides and imines18
generates ²-lactams in high yields and with good stereocontrol
OMe
(eq 11).19
O
O
Et3N O
OTMS
O
Ph
O
CH2Cl2
Et3N
O NBn
Br
N
0 °C
N
CH2Cl2 83%
R
R
COCl
"
0 °C
Ph
Ph
O
O OMe
H
Ph
(6)
O
O
OTMS
(11)
N
R
NBn
Ph
Triethylamine accomplishes the dehydrobromination of Ä…,Ä… - O
90% ee
dibromo sulfones using TEA in CH2Cl2 to afford Ä…,²-
unsaturated bromomethyl sulfones in good yields. Further treat-
The dehydration of primary nitroalkanes and the dehydrochlori-
ment of the sulfones with Potassium tert-Butoxide induces a
nation of chloroximes allows for the preparation of highly reactive
Ramberg Bäcklund-like reaction and leads to 1,3-dienes in mod-
nitrile oxides (eq 12). The nitrile oxides, which are not isolated,
erate to good yields (eq 7).10
undergo facile [3 + 2] cycloaddition reactions20 with a variety of
R
R trapping agents. Subjecting nitroalkanes to 2 equiv of Phenyl Iso-
O2
O2
Et3N
cyanate and a catalytic amount of triethylamine21 effects dehy-
t-BuOK
S
S
(7)
dration to form nitrile oxides (eq 13).22 Alternatively, treatment
CH2Cl2
R Br
0 °C
Br Br of oximes with aqueous Sodium Hypochlorite and triethylamine
in CH2Cl2 efficiently produces the nitrile oxides (eq 14).23
Chloroalkylidene malonates are converted via a
R
decarboxylation elimination reaction to alkynic esters by
(12)
R C N+ O NOH
R NO2
ć%
treatment with triethylamine at 90 C (eq 8).11 Likewise,
Cl
triethylamine is the preferred base for the conversion of
NO2
erythro-2,3-dibromobutanoic acid to cis-1-bromopropene (eq 9).
N+ O
C
Pyridine, Na2CO3, or NaHCO3 in DMF lead to poor yields of p-ClC6H4NCO [3 + 2]
the bromopropene.12
TEA
CO2Et
CO2Et
Cl CO2H
Et3N
(8)
CO2Et
90 °C
CO2Et
N
O
78%
(13)
Br CO2H
Et3N
H
(9)
40 °C Br
CO2Et
Br
57%
NaOCl
cat Et3N
PhCH=N Me
Exposure of 2,3-dibromo-3,3-difluoropropionyl chloride to ca.
NOH
Ph C N+ O
ć%
Ph
CH2Cl2 95%
1 equiv of triethylamine in CH2Cl2 at 0 C induces dehydro-
bromination and leads to 2-bromo-3,3-difluoroacryloyl chloride
Ph
N
in 63% yield (eq 10).13 Under these reaction conditions, the ketene
O
(14)
product of dehydrochlorination is not observed.
N
Me
Ph
O O
Et3N
Br Br
Cl Cl
(10)
CH2Cl2
Substitutions. Triethylamine finds use as a proton scavenger
0 °C
F F F F
in palladium-catalyzed coupling reactions involving aryl, alkenyl,
63%
Br
allyl, and alkyl derivatives.24 The palladium-catalyzed coupling
of vinyl halides with alkenes (Heck reaction) is an invaluable
Dehydrohalogenation of acid chlorides with a tertiary amine
method for forming carbon carbon bonds.25 The elements of an
is the typical method for the preparation of ketenes,14 most
intramolecular Heck reaction and the coupling of allylic alcohols
likely involving an acylammonium intermediate.15 Other meth-
with vinyl halides to afford aldehydes or ketones have been com-
ods are available which involve carboxyl group-activating agents
bined to generate moderate to excellent yields of cyclized products
and tertiary amine bases. TEA-generated ketenes find wide ap-
(eq 15).26
plication in organic synthesis, in particular in the synthesis of
A list of General Abbreviations appears on the front Endpapers
TRIETHYLAMINE 3
R R O
R R O
1. Sn(OTf)2, Et3N
Pd(OAc)2, Ph3P O N
(15)
Br 2. PhCHO, THF
Et3N, MeCN, 80 °C
NCS
 78 °C
HO CHO
Bn
52%
O
R = CO2Me O O
Ph
O
O
N
O
N OSnL (18)
91%
In an asymmetric variation of the Heck reaction, triethyl- O
HN
Bn
amine is used in combination with (R)-(R)- & (S)-2,2 -Bis-
Bn NCS Ph
S
(diphenylphosphino)-1,1 -binaphthyl ((R)-BINAP) for prepar-
99:1
ing enantiomerically enriched 2-aryl-2,3-dihydrofurans from aryl
triflates.27 Though TEA resulted in the highest degree of diastereo-
The regioselective synthesis of silyl enol ethers involves the
selectivity, the base 1,8-Bis(dimethylamino)naphthalene (proton
trapping of the enolate anion of ketones and esters under kinetic
sponge) was found to be superior in regards to enantiomeric purity
or thermodynamic conditions.34 Treatment of the unsymmetrical
(eq 16).28,29
ketone 2-methylcyclohexanone with TEA and Chlorotrimethyl-
silane in DMF affords a 22:78 mixture of the kinetic and thermo-
Pd(OAc)2
dynamic trimethylsilyl enol ethers. Using Lithium Diisopropyl-
(R)-BINAP
p-ClC6H4OTf +
amide in DME under kinetic control leads to a >99:1 mixture
base, benzene
O
of the kinetic and thermodynamic silyl enol ethers in 74% yield
(eq 19).35 Likewise, treatment of acetone with chlorotrimethyl-
+ (16)
Ar Ar
silane, TEA, and anhydrous Sodium Iodide in acetonitrile leads
O O
to acetone trimethylsilyl enol ether in good yield.36
OTMS
OTMS
% ee (yield)
Base % ee (yield) TMSCl, Et3N
+
DIPEA DMF, "
82 (92) 60 (8)
O
80%
Et3N
75 (98) 9 (2)
proton sponge
96 (71) 17 (29)
(19)
22:78
OTMS
Triethylamine also finds use in the enolboronation of vari-
TMSCl, LDA
ous carbonyl compounds using dialkylboron halides.30 These
DME, 0 °C
boron enolates are valuable in the stereocontrolled aldol reac- 74%
tion. Proper choice of boron reagent, reaction solvent, reaction
temperature, and tertiary amine base influences the enolate geom-
The mixture of TEA and Zinc Chloride is effective for con-
etry of ketones31 and esters.32 The use of the sterically demand-
verting Ä…,²-unsaturated ketones and aldehydes into the corre-
ing dialkylboron halides, such as dicyclohexylboron chloride
sponding silyl enol ethers. The Danishefsky Kitahara diene is
(Chx2BCl), with triethylamine favors formation of the (E)-enol
prepared in 68% yield by treatment of 4-methoxy-3-buten-2-one
borinates, while dialkylboron triflates or dialkylboron halides,
with an excess of TEA and TMSCl in the presence of a catalytic
such as B-chloro-9-BBN, with diisopropylethylamine in ether at
amount of anhydrous ZnCl2 in benzene (eq 20).37 Under similar
ć%
-78 C favor the (Z)-enol borinates (eq 17).31a,b For similar com-
reaction conditions, crotonaldehyde and 3-methylcrotonaldehyde
plementary methodologies for generating both the (E)- and (Z)-
are also converted into their corresponding enol ethers. 3-
boron enolates of esters, see Diisopropylethylamine.
Methylcrotonaldehyde leads to an 80/20 mixture of (E/Z) dienes,
while crotonaldehyde yields the (E)-silyl enol ether exclusively
OB-9-BBN
(eq 21).38
B-Cl-9-BBN
i-Pr2NEt, ether TMSO
O
 78 °C
Et3N, ZnCl2
>99% (20)
(Z)
TMSCl, C6H6
Et
(17)
68%
OMe
OMe
OBChx2
O
Chx2BCl
R
Et3N, ZnCl2 R
Et3N, ether (21)
CHO
TMSCl, Et2O, "
 78 °C
OTMS
>99%
(E)
R = H; E:Z = 100:0 (62%)
R = Me; E:Z = 80:20 (74%)
The asymmetric aldol addition involving N-acyloxazolidinones
and aldehydes can be carried out with high stereoselectivity utiliz-
Triethylamine in combination with Triethylsilyl Perchlo-
ing Tin(II) Trifluoromethanesulfonate and triethylamine. Treat-
rate is somewhat selective in the generation of the (Z)-
ment of N-(isothiocyanoacetyl)-2-oxazolidinones and aldehydes
silylketene acetal of isopropyl propionate (eq 22)39 (see 2,2,6,
ć%
with tin(II) triflate and TEA at -78 C in THF leads to high yields
6-Tetramethylpiperidine for a comparison of other bases). Tri-
of aldol products with high diastereoselectivity (eq 18).33
ethylamine and tert-Butyldimethylsilyl Trifluoromethanesul-
Avoid Skin Contact with All Reagents
4 TRIETHYLAMINE
fonate (TBDMSOTf) are quite effective in preparing silyl enol conveniently esterified using equimolar amounts of alkyl chlo-
ethers from sterically hindered ketones and lactones (eq 23).40 roformates with triethylamine and a catalytic amount of 4-
Dimethylaminopyridine.49 TEA is an effective base for the alky-
Et3SiOClO3
lation (protection) of carboxylic acids with Chloroacetonitrile to
OSiEt3
Et3N
(22)
EtCO2-i-Pr
produce cyanomethyl esters.50 Primary amines with pKa values
CHCl3,  70 °C
O-i-Pr
of 10 11 react with 1,1,4,4-tetramethyl-1,4-dichlorodisilethylene
in the presence of TEA at rt to afford the disilylazacyclopentane
(E):(Z) = 37:63
derivatives in high yields (eq 27).51 Amines with lower pKa val-
H ues require Butyllithium as the base or can be protected via a
O
Zinc Iodide-catalyzed trans-silylation with 1,1,4,4-tetramethyl-
TBDMS-OTf
OC
1,4-bis(N,N-dimethylamino)disilethylene (eq 28).52
Et3N, CH2Cl2
O
rt, 12 h
H
CO2Me
93% SiMe2
H
H2N
H
O
Me2Si SiMe2 N
Si
Cl Cl
Me2
(27)
OC (23)
N
N
Et3N, CH2Cl2
O
TBDMSO
O
CO2Me 75%
H
CO2Me
Triethylamine is the base of choice in neutralizing the acids
liberated in preparing (1) diazo ketones from acid chlorides and Me2
Me2Si SiMe2
Si
Me2N NMe2
Diazomethane, (2) mixed anhydrides from carboxylic acids and
(28)
Br NH2 Br N
alkyl haloformates, and (3) esters from carboxylic acids and alkyl ZnI2, 140 °C
Si
93%
halides, such as phenacyl bromide.41 Me2
Triethylamine is particularly useful as a proton scavenger in
the field of protective group chemistry.42 For just a few examples:
Triethylamine and other tertiary amines find utility in the deriva-
alcohols have been protected as substituted methyl ethers with
tization of amino acids as well as coupling reactions to prepare
such alkylating agents as Chloromethyl Methyl Sulfide43 and tert-
peptides.53 The basicity and steric nature of the tertiary amine
Butyl Chloromethyl Ether44 using TEA as a base. Primary alco-
utilized during the coupling reaction influences the degree of
hols can be selectively silylated in the presence of secondary and
racemization.54
tertiary alcohols using tert-Butyldiphenylchlorosilane with TEA
and a catalytic amount of 4-Dimethylaminopyridine (eq 24).45
Related Reagents. Palladium Triethylamine Formic Acid.
The selective benzoylation of diols can be achieved using 1-
(benzoyloxy)benzotriazole (BOBT) and TEA in CH2Cl2 at room
temperature (eq 25).46 Diols, in particular 1,2- and 1,3-diols, re-
act with Di-tert-butyldichlorosilane in the presence of TEA and
1. Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals,
a variety of silyl transfer agents to afford the di-t-butylsilylene 3rd ed.; Pergamon: Oxford, 1988; p 296.
derivatives in good yields (eq 26).47 2. (a) Schreiber, S. L.; Claus, R. E.; Reagan, J., Tetrahedron Lett. 1982, 23,
3867. (b) Claus, R. E.; Schreiber, S. L., Org. Synth., Coll. Vol. 1990,
HO Ur
7, 168. (c) See also: Bailey, P. S. Ozonation in Organic Chemistry;
O TBDPSCl
Academic: New York, 1978; Vol. 1.
Et3N, cat DMAP
3. (a) Mancuso, A. J.; Huang, S.-L.; Swern, D., J. Org. Chem. 1978,
DMF, rt
OH OH
43, 2480. (b) Omura, K.; Swern, D., Tetrahedron 1978, 34, 1651.
68%
(c) Mancuso, A. J.; Swern, D., Synthesis 1981, 165. (d) For other
Ur = uridine
examples of  Swern-like oxidations, see: Hudlicky, M. Oxidations in
TBDPSO Ur
Organic Chemistry; American Chemical Society: Washington, 1990.
O
(24)
4. Corey, E. J.; Kim, C. U., J. Am. Chem. Soc. 1972, 94, 7586.
5. Huang, S. L.; Omura, K.; Swern, D., Synthesis 1978, 297.
OH OH
6. Albright, J. D., J. Org. Chem. 1974, 39, 1977.
O OBz
O OH
Ph
BOBT, Et3N
Ph 7. Amon, C. M.; Banwell, M. G.; Gravatt, G. L., J. Org. Chem. 1987, 52,
O
O
(25)
4851.
CH2Cl2, rt
90%
OH OMe
8. For examples, see: Fieser, L. F.; Fieser, M., Fieser & Fieser 1967, 1,
OH OMe
1201.
O
9. See (a) Kraus, G. A.; Hon, Y.-S., J. Org. Chem. 1986, 51, 116. (b) Kraus,
O
H
H
t-Bu2SiCl2
G. A.; Hon, Y.-S.; Sy, J.; Raggon, J., J. Org. Chem. 1988, 53, 1397, and
HOBT, Et3N
references cited therein.
(26)
AcCN
10. Block, E.; Aslam, M., J. Am. Chem. Soc. 1983, 105, 6164 and 6165.
H
84%
H
O O OAc
11. Hormi, O., Org. Synth., Coll. Vol. 1993, 8, 247.
OH OH OAc
Si
12. Fuller, C. E.; Walker, D. G., J. Org. Chem. 1991, 56, 4066.
t-Bu
t-Bu
13. Brahms, J. C.; Dailey, W. P., J. Org. Chem. 1991, 56, 900.
Carbamates are cleaved easily to alcohols upon expo-
14. Koppel, G. A. In Small Ring Heterocycles; Hassner, A., Ed.; Wiley: New
sure to Trichlorosilane and TEA48 and carboxylic acids are York, 1983.
A list of General Abbreviations appears on the front Endpapers
TRIETHYLAMINE 5
15. Wasserman, H. H.; Piper, J. U.; Dehmlow, E. V., J. Org. Chem. 1973, 38, E., Tetrahedron Lett. 1987, 28, 39 and Iseki, K.; Oishi, S.; Taguchi, T.;
1451 and references cited therein. Kobayashi, Y., Tetrahedron Lett. 1993, 34, 8147.
16. Georg, G. I.; Ravikumar, V. T. In The Organic Chemistry of ²-Lactams; 34. (a) Colvin, E. W. Silicon in Organic Synthesis; Butterworths: London,
Georg, G. I. Ed.; VCH: New York, 1992; p 295. 1981; Chapter 17. (b) Rasmussen, J. K., Synthesis 1977, 91. (c) Fleming,
I., Chimia 1980, 34, 265. (d) Brownbridge, P., Synthesis 1983, 1 and 85.
17. (a) Thomas, R. C., Tetrahedron Lett. 1989, 30, 5239. (b) Cooper, R. D.
(e) Taylor, R. J. K., Synthesis 1985, 364.
G.; Daugherty, B. W.; Boyd, D. B., Pure Appl. Chem. 1987, 59, 485.
35. (a) House, H. O.; Czuba, L. J.; Gall, M.; Olmstead, H. D., J. Org.
18. (a) Evans, D. A.; Sjogren, E. B., Tetrahedron Lett. 1985, 26, 3783.
Chem. 1969, 34, 2324. (b) Fleming, I.; Paterson, I., Synthesis 1979, 736.
(b) Evans, D. A.; Sjogren, E. B., Tetrahedron Lett. 1985, 26, 3787.
(c) Reetz, M. T.; Chatzhosifidis, I.; Hubner, F.; Heimbach, H., Org.
(c) Bodurow, C. C.; Boyer, B. D.; Brennan, J.; Bunnell, C. A.; Burks, J.
Synth., Coll. Vol. 1990, 7, 424. (d) Jung, M. E.; McCombs, C. A., Org.
E.; Carr, M. A.; Doecke, C. W.; Eckrich, T. M.; Fisher, J. W.; Gardner,
Synth. 1978, 58, 163; Org. Synth., Coll. Vol. 1988, 6, 445.
J. P.; Graves, B. J.; Hines, P.; Hoying, R. C.; Jackson, B. G.; Kinnick,
M. D.; Kochert, C. D.; Lewis, J. S.; Luke, W. D.; Moore, L. L.; Morin, 36. Walshe, N. D. A.; Goodwin, G. B. T.; Smith, G. C.; Woodward, F. E.,
J. M., Jr.; Nist, R. L.; Prather, D. E.; Sparks, D. L.; Vladuchick, W. C., Org. Synth. 1987, 65, 1; Org. Synth., Coll. Vol. 1993, 8, 1.
Tetrahedron Lett. 1989, 30, 2321.
37. (a) Danishefsky, S.; Kitahara, T., J. Am. Chem. Soc. 1974, 96, 7807.
19. Boger, D. L.; Myers, J. B., Jr., J. Org. Chem. 1991, 56, 5385. (b) Danishefsky, S.; Kitahara, T.; Schuda, P. F., Org. Synth., Coll. Vol.
1990, 7, 312.
20. Curran, D. P. In Advances in Cycloaddition; Curran, D. P., Ed.; JAI:
Greenwich, CT, 1988; Vol. 1, p 129. 38. Gaonac h, O.; Maddaluno, J.; Chauvin, J.; Duhamel, L., J. Org. Chem.
1991, 56, 4045.
21. Mukaiyama, T.; Hoshino, T., J. Am. Chem. Soc. 1960, 82, 5339.
39. Wilcox, C. S.; Babston, R. E., Tetrahedron Lett. 1984, 25, 699.
22. (a) Kozikowski, A. P.; Stein, P. D., J. Am. Chem. Soc. 1982, 104, 4023.
(b) Kozikowski, A. P., Acc. Chem. Res. 1984, 17, 410. 40. Mander, L. N.; Sethi, S. P., Tetrahedron Lett. 1984, 25, 5953.
23. Lee, G. A., Synthesis 1982, 508. 41. For examples, see: Fieser, L. F.; Fieser, M., Fieser & Fieser 1967, 1,
1198.
24. (a) Daves, G. D., Jr.; Hallberg, A., Chem. Rev. 1989, 89, 1433. (b) Heck,
R. F. Palladium Reagents in Organic Syntheses; Academic: New York, 42. For numerous references, see: Greene, T. W.; Wuts, P. G. M. Protective
1985. Groups In Organic Synthesis, 2nd ed.; Wiley: New York, 1991.
25. Heck, R. F., Org. React. 1982, 27, 345. 43. Suzuki, K.; Inanaga, J.; Yamaguchi, M., Chem. Lett. 1979, 1277.
26. (a) Gaudin, J.-M., Tetrahedron Lett. 1991, 32, 6113, and references cited 44. Pinnick, H. W.; Lajis, N. H., J. Org. Chem. 1978, 43, 3964.
therein. (b) See also: Shi, L.; Narula, C. K.; Mak, K. T.; Kao, L.; Xu, Y.;
45. (a) Chaudhary, S. K.; Hernandez, O., Tetrahedron Lett. 1979, 99.
Heck, R. F., J. Org. Chem. 1983, 48, 3894.
(b) See also: Guindon, Y.; Yoakim, C.; Bernstein, M. A.; Morton, H.
27. Ozawa, F.; Kubo, A.; Hayashi, T., J. Am. Chem. Soc. 1991, 113, 1417. E., Tetrahedron Lett. 1985, 26, 1185. (c) Hanessian, S.; Lavallee, P.,
Can. J. Chem. 1975, 53, 2975.
28. Ozawa, F.; Kubo, A.; Hayashi, T., Tetrahedron Lett. 1992, 33, 1485.
46. (a) Soll, R. M.; Seitz, S. P., Tetrahedron Lett. 1987, 28, 5457. (b) See
29. For an intramolecular Heck-type reaction, see: (a) Sato, Y.; Sodeoka, M.;
also: Kim, S.; Chang, H.; Kim, W. J., J. Org. Chem. 1985, 50, 1751.
Shibasaki, M., J. Org. Chem. 1989, 54, 4738. (b) Mori, M.; Kaneta, N.;
Shibasaki, M., J. Org. Chem. 1991, 56, 3486. 47. Trost, B. M.; Caldwell, C. G.; Murayama, E.; Heissler, D., J. Org. Chem.
1983, 48, 3252.
30. Brown, H. C.; Ganesan, K.; Dhar, R. K., J. Org. Chem. 1992, 57, 3767.
48. Pirkle, W. H.; Hauske, J. R., J. Org. Chem. 1977, 42, 2781.
31. (a) Brown, H. C.; Dhar, R. K.; Bakshi, R. K.; Pandiarajan, P. K.;
Singaram, B., J. Am. Chem. Soc. 1989, 111, 3441. (b) Brown, H. C.; Dhar, 49. Kim, S.; Kim, Y. C.; Lee, J. I., Tetrahedron Lett. 1983, 24, 3365.
R. K.; Ganesan, K.; Singaram, B., J. Org. Chem. 1992, 57, 499 and 2716.
50. Hugel, H. M.; Bhaskar, K. V.; Longmore, R. W., Synth. Commun. 1992,
(c) Enders, D.; Lohray, B. B., Angew. Chem., Int. Ed. Engl. 1988, 27, 581.
22, 693.
(d) Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R., J. Am. Chem. Soc.
51. Djuric, S.; Venit, J.; Magnus, P., Tetrahedron Lett. 1981, 22, 1787.
1981, 103, 3099. (e) Van Horn, D. E.; Masamune, S., Tetrahedron Lett.
52. Guggenheim, T. L., Tetrahedron Lett. 1984, 25, 1253.
1979, 2229. (f) Evans, D. A.; Vogel, E.; Nelson, J. V., J. Am. Chem. Soc.
53. See: (a) Bodanszky, M.; Bodanszky, A. The Practice of Peptide Synthesis,
1979, 101, 6120. (g) Paterson, I.; Osborne, S., Tetrahedron Lett. 1990,
2nd ed.; Springer: Berlin, 1994. (b) Bodanszky, M.; Klausner, Y. S.;
31, 2213. (h) For sulfenylation and selenenylation of enol borinates, see:
Ondetti, M. A. Peptide Synthesis, 2nd ed.; Wiley: New York, 1976.
Paterson, I.; Osborne, S., Synlett 1991, 145.
54. (a) Bodanszky, M.; Bodanszky, A., J. Chem. Soc., Chem. Commun. 1967,
32. (a) Corey, E. J.; Lee, D.-H., J. Am. Chem. Soc. 1991, 113, 4026. (b) Corey,
591. (b) Williams, A. W.; Young, G. T., J. Chem. Soc., Perkin Trans. 1
E. J.; Kim, S. S., J. Am. Chem. Soc. 1990, 112, 4976. (c) Hirama, M.;
1972, 1194. (c) Chen, F. M. F.; Lee, Y.; Steinauer, R.; Benoiton, N. L.,
Masamune, S., Tetrahedron Lett. 1979, 2225. (d) Gennari, C.; Bernardi,
Can. J. Chem. 1987, 65, 613. (d) Slebioda, M.; St-Amand, M. A.; Chen,
A.; Cardani, S.; Scolastico, C., Tetrahedron 1984, 40, 4059. (e) Otsuka,
F. M. F.; Benoiton, N. L., Can. J. Chem. 1988, 66, 2540.
M.; Yoshida, M.; Kobayashi, S.; Ohno, M., Tetrahedron Lett. 1981, 22,
2109.
Kirk L. Sorgi
33. (a) Lago, M. A.; Samanen, J.; Elliott, J. D., J. Org. Chem. 1992, 57,
The R. W. Johnson Pharmaceutical Research Institute,
3493. (b) Evans, D. A.; Weber, A. E., J. Am. Chem. Soc. 1986, 108,
6757. (c) See also: Evans, D. A.; Sjogren, E. B.; Weber, A. E.; Conn, R. Spring House, PA, USA
Avoid Skin Contact with All Reagents


Wyszukiwarka

Podobne podstrony:
palladium triethylamine formic?id eros rp015
phenylcopper eros rp058
peracetic?id eros rp034
palladium on?rium sulfate eros rp003
iodine eros ri005
benzyl bromide eros rb047
palladium II?etate eros rp001
zinc borohydride eros rz004
potassium permanganate eros rp244
nickel?talysts heterogeneous eros rn011
boric?id eros rb242
sodium amide eros rs041
hydrogen peroxide urea eros rh047
zinc bromide eros rz005
tin IV chloride zinc chloride eros eros rt115
sodium bromide eros rs054
nickel in charcoal eros rn00732
ozone eros ro030
paraformaldehyde eros rp018

więcej podobnych podstron