budynas SM ch05


budynas_SM_ch05.qxd 11/29/2006 15:00 Page 115
FIRST PAGES
Chapter 5
5-1
Sy
MSS: Ã1 - Ã3 = Sy/n Ò! n =
Ã1 - Ã3
Sy
DE: n =

Ã
1/2 1/2
2 2 2 2 2
à = ÃA - ÃAÃB + ÃB = Ãx - ÃxÃy + Ãy + 3Äxy
(a) MSS: Ã1 = 12, Ã2 = 6, Ã3 = 0 kpsi
50
n = = 4.17 Ans.
12
50

DE: Ã = (122 - 6(12) + 62)1/2 = 10.39 kpsi, n = = 4.81 Ans.
10.39
2
12 12
(b) ÃA, ÃB = Ä… + (-8)2 = 16, -4 kpsi
2 2
Ã1 = 16, Ã2 = 0, Ã3 =-4 kpsi
50
MSS: n = = 2.5 Ans.
16 - (-4)
50

DE: Ã = (122 + 3(-82))1/2 = 18.33 kpsi, n = = 2.73 Ans.
18.33

2
-6 - 10 -6 + 10
(c) ÃA, ÃB = Ä… + (-5)2 =-2.615, -13.385 kpsi
2 2
Ã1 = 0, Ã2 =-2.615, Ã3 =-13.385 kpsi
B
50
MSS: n = = 3.74 Ans.
0 - (-13.385)

DE: Ã = [(-6)2 - (-6)(-10) + (-10)2 + 3(-5)2]1/2
A
= 12.29 kpsi
50
n = = 4.07 Ans.
12.29
2
12 + 4 12 - 4
(d) ÃA, ÃB = Ä… + 12 = 12.123, 3.877 kpsi
2 2
Ã1 = 12.123, Ã2 = 3.877, Ã3 = 0 kpsi
50
MSS: n = = 4.12 Ans.
12.123 - 0

DE: Ã = [122 - 12(4) + 42 + 3(12)]1/2 = 10.72 kpsi
50
n = = 4.66 Ans.
10.72
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 116
FIRST PAGES
116 Solutions Manual " Instructor s Solution Manual to Accompany Mechanical Engineering Design
5-2 Sy = 50 kpsi
Sy
MSS: Ã1 - Ã3 = Sy/n Ò! n =
Ã1 - Ã3
1/2 1/2
2 2 2 2
DE: ÃA - ÃAÃB + ÃB = Sy/n Ò! n = Sy/ ÃA - ÃAÃB + ÃB
50
(a) MSS: Ã1 = 12 kpsi, Ã3 = 0, n = = 4.17 Ans.
12 - 0
50
DE: n = = 4.17 Ans.
[122 - (12)(12) + 122]1/2
50
(b) MSS: Ã1 = 12 kpsi, Ã3 = 0, n = = 4.17 Ans.
12
50
DE: n = = 4.81 Ans.
[122 - (12)(6) + 62]1/2
50
(c) MSS: Ã1 = 12 kpsi, Ã3 =-12 kpsi, n = = 2.08 Ans.
12 - (-12)
50
DE: n = = 2.41 Ans.
[122 - (12)(-12) + (-12)2]1/3
50
(d) MSS: Ã1 = 0, Ã3 =-12 kpsi, n = = 4.17 Ans.
-(-12)
50
DE: n = = 4.81
[(-6)2 - (-6)(-12) + (-12)2]1/2
5-3 Sy = 390 MPa
Sy
MSS: Ã1 - Ã3 = Sy/n Ò! n =
Ã1 - Ã3
1/2 1/2
2 2 2 2
DE: ÃA - ÃAÃB + ÃB = Sy/n Ò! n = Sy/ ÃA - ÃAÃB + ÃB
390
(a) MSS: Ã1 = 180 MPa, Ã3 = 0, n = = 2.17 Ans.
180
390
DE: n = = 2.50 Ans.
[1802 - 180(100) + 1002]1/2
2
180 180
(b) ÃA, ÃB = Ä… + 1002 = 224.5, -44.5MPa = Ã1, Ã3
2 2
390
MSS: n = = 1.45 Ans.
224.5 - (-44.5)
390
DE: n = = 1.56 Ans.
[1802 + 3(1002)]1/2
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 117
FIRST PAGES
Chapter 5 117
2
160 160
(c) ÃA, ÃB =- Ä… - + 1002 = 48.06, -208.06 MPa = Ã1, Ã3
2 2
390
MSS: n = = 1.52 Ans.
48.06 - (-208.06)
390
DE: n = = 1.65 Ans.
[-1602 + 3(1002)]1/2
(d) ÃA, ÃB = 150, -150 MPa = Ã1, Ã3
390
MSS: n = = 1.30 Ans.
150 - (-150)
390
DE: n = = 1.50 Ans.
[3(150)2]1/2
5-4 Sy = 220 MPa
(a) Ã1 = 100, Ã2 = 80, Ã3 = 0MPa
220
MSS: n = = 2.20 Ans.
100 - 0

DET: Ã = [1002 - 100(80) + 802]1/2 = 91.65 MPa
220
n = = 2.40 Ans.
91.65
(b) Ã1 = 100, Ã2 = 10, Ã3 = 0MPa
220
MSS: n = = 2.20 Ans.
100

DET: Ã = [1002 - 100(10) + 102]1/2 = 95.39 MPa
220
n = = 2.31 Ans.
95.39
(c) Ã1 = 100, Ã2 = 0, Ã3 =-80 MPa
220
MSS: n = = 1.22 Ans.
100 - (-80)

DE: Ã = [1002 - 100(-80) + (-80)2]1/2 = 156.2MPa
220
n = = 1.41 Ans.
156.2
(d) Ã1 = 0, Ã2 =-80, Ã3 =-100 MPa
220
MSS: n = = 2.20 Ans.
0 - (-100)

DE: Ã = [(-80)2 - (-80)(-100) + (-100)2] = 91.65 MPa
220
n = = 2.40 Ans.
91.65
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 118
FIRST PAGES
118 Solutions Manual " Instructor s Solution Manual to Accompany Mechanical Engineering Design
5-5
OB 2.23
(a) MSS: n = = = 2.1
OA 1.08
OC 2.56
DE: n = = = 2.4
OA 1.08
OE 1.65
(b) MSS: n = = = 1.5
OD 1.10
OF 1.8
DE: n = = = 1.6
OD 1.1
B
(a)
C
B
A
Scale
1" 200 MPa
O A
D
(b)
E
F
J
K
G
L
(d)
H
I
(c)
OH 1.68
(c) MSS: n = = = 1.6
OG 1.05
OI 1.85
DE: n = = = 1.8
OG 1.05
OK 1.38
(d) MSS: n = = = 1.3
OJ 1.05
OL 1.62
DE: n = = = 1.5
OJ 1.05
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 119
FIRST PAGES
Chapter 5 119
5-6 Sy = 220 MPa
OB 2.82
(a) MSS: n = = = 2.2
OA 1.3
OC 3.1
DE: n = = = 2.4
OA 1.3
OE 2.2
(b) MSS: n = = = 2.2
OD 1
OF 2.33
DE: n = = = 2.3
OD 1
B
(a)
C
B
1" 100 MPa
E
(b)
D
F
O
A
G
H
J
I
(c)
K
L
(d)
OH 1.55
(c) MSS: n = = = 1.2
OG 1.3
OI 1.8
DE: n = = = 1.4
OG 1.3
OK 2.82
(d) MSS: n = = = 2.2
OJ 1.3
OL 3.1
DE: n = = = 2.4
OJ 1.3
A
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 120
FIRST PAGES
120 Solutions Manual " Instructor s Solution Manual to Accompany Mechanical Engineering Design
5-7 Sut = 30 kpsi, Suc = 100 kpsi; ÃA = 20 kpsi, ÃB = 6 kpsi
Sut 30
(a) MNS: Eq. (5-30a) n = = = 1.5 Ans.
Ãx 20
30
BCM: Eq. (5-31a) n = = 1.5 Ans.
20
30
MM: Eq. (5-32a) n = = 1.5 Ans.
20
(b) Ãx = 12 kpsi,Äxy =-8 kpsi
2
12 12
ÃA, ÃB = Ä… + (-8)2 = 16, -4 kpsi
2 2
30
MNS: Eq. (5-30a) n = = 1.88 Ans.
16
1 16 (-4)
BCM: Eq. (5-31b) = - Ò! n = 1.74 Ans.
n 30 100
30
MM: Eq. (5-32a) n = = 1.88 Ans.
16
(c) Ãx =-6 kpsi, Ãy =-10 kpsi,Äxy =-5 kpsi

2
-6 - 10 -6 + 10
ÃA, ÃB = Ä… + (-5)2 =-2.61, -13.39 kpsi
2 2
100
MNS: Eq. (5-30b) n =- = 7.47 Ans.
-13.39
100
BCM: Eq. (5-31c) n =- = 7.47 Ans.
-13.39
100
MM: Eq. (5-32c) n =- = 7.47 Ans.
-13.39
(d) Ãx =-12 kpsi,Äxy = 8 kpsi
2
12 12
ÃA, ÃB =- Ä… - + 82 = 4, -16 kpsi
2 2
-100
MNS: Eq. (5-30b) n = = 6.25 Ans.
-16
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 121
FIRST PAGES
Chapter 5 121
1 4 (-16)
BCM: Eq. (5-31b) = - Ò! n = 3.41 Ans.
n 30 100
1 (100 - 30)4 -16
MM: Eq. (5-32b) = - Ò! n = 3.95 Ans.
n 100(30) 100
B
B
(a)
1" 20 kpsi
A
O
A
C
E
D (b)
K
F
G
H
J
L
(d)
(c)
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 122
FIRST PAGES
122 Solutions Manual " Instructor s Solution Manual to Accompany Mechanical Engineering Design
5-8 See Prob. 5-7 for plot.
OB 1.55
(a) For all methods: n = = = 1.5
OA 1.03
OD 1.4
(b) BCM: n = = = 1.75
OC 0.8
OE 1.55
All other methods: n = = = 1.9
OC 0.8
OL 5.2
(c) For all methods: n = = = 7.6
OK 0.68
OJ 5.12
(d) MNS: n = = = 6.2
OF 0.82
OG 2.85
BCM: n = = = 3.5
OF 0.82
OH 3.3
MM: n = = = 4.0
OF 0.82
5-9 Given: Sy = 42 kpsi, Sut = 66.2 kpsi, µf = 0.90. Since µf > 0.05, the material is ductile and
thus we may follow convention by setting Syc = Syt.

Use DE theory for analytical solution. For à , use Eq. (5-13) or (5-15) for plane stress and
Eq. (5-12) or (5-14) for general 3-D.

(a) Ã = [92 - 9(-5) + (-5)2]1/2 = 12.29 kpsi
42
n = = 3.42 Ans.
12.29

(b) Ã = [122 + 3(32)]1/2 = 13.08 kpsi
42
n = = 3.21 Ans.
13.08

(c) Ã = [(-4)2 - (-4)(-9) + (-9)2 + 3(52)]1/2 = 11.66 kpsi
42
n = = 3.60 Ans.
11.66

(d) Ã = [112 - (11)(4) + 42 + 3(12)]1/2 = 9.798
42
n = = 4.29 Ans.
9.798
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 123
FIRST PAGES
Chapter 5 123
B
(d)
H
1 cm 10 kpsi
G
O
A
(b)
C
D
A
E
B
(a)
F
(c)
For graphical solution, plot load lines on DE envelope as shown.
(a) ÃA = 9, ÃB =-5 kpsi
OB 3.5
n = = = 3.5 Ans.
OA 1
2
12 12
(b) ÃA, ÃB = Ä… + 32 = 12.7, -0.708 kpsi
2 2
OD 4.2
n = = = 3.23
OC 1.3
2
-4 - 9 4 - 9
(c) ÃA, ÃB = Ä… + 52 =-0.910, -12.09 kpsi
2 2
OF 4.5
n = = = 3.6 Ans.
OE 1.25
2
11 + 4 11 - 4
(d) ÃA, ÃB = Ä… + 12 = 11.14, 3.86 kpsi
2 2
OH 5.0
n = = = 4.35 Ans.
OG 1.15
5-10 This heat-treated steel exhibits Syt = 235 kpsi, Syc = 275 kpsi and µf = 0.06. The steel is
ductile (µf > 0.05) but of unequal yield strengths. The Ductile Coulomb-Mohr hypothesis
(DCM) of Fig. 5-19 applies  confine its use to first and fourth quadrants.
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 124
FIRST PAGES
124 Solutions Manual " Instructor s Solution Manual to Accompany Mechanical Engineering Design
(a) Ãx = 90 kpsi, Ãy =-50 kpsi, Ãz = 0 ÃA = 90 kpsi and ÃB =-50 kpsi. For the
fourth quadrant, from Eq. (5-31b)
1 1
n = = = 1.77 Ans.
(ÃA/Syt) - (ÃB/Suc) (90/235) - (-50/275)
(b) Ãx = 120 kpsi, Äxy =-30 kpsi ccw. ÃA, ÃB = 127.1, -7.08 kpsi. For the fourth
quadrant
1
n = = 1.76 Ans.
(127.1/235) - (-7.08/275)
(c) Ãx =-40 kpsi, Ãy =-90 kpsi, Äxy = 50 kpsi. ÃA, ÃB =-9.10, -120.9 kpsi.
Although no solution exists for the third quadrant, use
Syc 275
n =- =- = 2.27 Ans.
Ãy -120.9
(d) Ãx = 110 kpsi, Ãy = 40 kpsi, Äxy = 10 kpsi cw. ÃA, ÃB = 111.4, 38.6 kpsi. For the
first quadrant
Syt 235
n = = = 2.11 Ans.
ÃA 111.4
Graphical Solution:
B
OB 1.82
(a) n = = = 1.78
OA 1.02
OD 2.24
(b) n = = = 1.75
OC 1.28
OF 2.75
(c) n = = = 2.22
OE 1.24
OH 2.46
(d) n = = = 2.08
H (d)
OG 1.18
1 in 100 kpsi
G
A
O
C (b)
D
A
B (a)
E
F
(c)
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 125
FIRST PAGES
Chapter 5 125
5-11 The material is brittle and exhibits unequal tensile and compressive strengths. Decision:
Use the Modified Mohr theory.
Sut = 22 kpsi, Suc = 83 kpsi
(a) Ãx = 9 kpsi, Ãy =-5 kpsi. ÃA, ÃB = 9, -5 kpsi. For the fourth quadrant,
5
|ÃB | = < 1, use Eq. (5-32a)
ÃA 9
Sut 22
n = = = 2.44 Ans.
ÃA 9
(b) Ãx = 12 kpsi, Äxy =-3 kpsi ccw. ÃA, ÃB = 12.7, -0.708 kpsi. For the fourth quad-
0.708
rant, |ÃB | = < 1,
ÃA 12.7
Sut 22
n = = = 1.73 Ans.
ÃA 12.7
(c) Ãx =-4 kpsi, Ãy =-9 kpsi, Äxy = 5 kpsi. ÃA, ÃB =-0.910, -12.09 kpsi. For the
third quadrant, no solution exists; however, use Eq. (6-32c)
-83
n = = 6.87 Ans.
-12.09
(d) Ãx = 11 kpsi, Ãy = 4 kpsi,Äxy = 1 kpsi. ÃA, ÃB = 11.14, 3.86 kpsi. Forthefirstquadrant
SA Syt 22
n = = = = 1.97 Ans.
ÃA ÃA 11.14
B
30
Sut 22
(d )
A
30
(b)
(a)
 50
Sut 83
(c)
 90
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 126
FIRST PAGES
126 Solutions Manual " Instructor s Solution Manual to Accompany Mechanical Engineering Design
.
5-12 Since µf < 0.05, the material is brittle. Thus, Sut = Suc and we may use MM which is
basically the same as MNS.
(a) ÃA, ÃB = 9, -5 kpsi
35
n = = 3.89 Ans.
9
(b) ÃA, ÃB = 12.7, -0.708 kpsi
35
n = = 2.76 Ans.
12.7
(c) ÃA, ÃB =-0.910, -12.09 kpsi (3rd quadrant)
36
n = = 2.98 Ans.
B
12.09
(d) ÃA, ÃB = 11.14, 3.86 kpsi
35
n = = 3.14 Ans.
11.14
1 cm 10 kpsi
H
(d)
Graphical Solution:
G
OB 4
(a) n = = = 4.0 Ans. A
O
(b)
OA 1 C
D
A
OD 3.45
E
(b) n = = = 2.70 Ans.
OC 1.28
B
OF 3.7
(a)
(c) n = = = 2.85 Ans. (3rd quadrant)
OE 1.3
F
OH 3.6
(d) n = = = 3.13 Ans.
(c)
OG 1.15
5-13 Sut = 30 kpsi, Suc = 109 kpsi
Use MM:
(a) ÃA, ÃB = 20, 20 kpsi
30
Eq. (5-32a): n = = 1.5 Ans.
20

(b) ÃA, ÃB =Ä… (15)2 = 15, -15 kpsi
30
Eq. (5-32a) n = = 2 Ans.
15
(c) ÃA, ÃB =-80, -80 kpsi
For the 3rd quadrant, there is no solution but use Eq. (5-32c).
109
Eq. (5-32c): n =- = 1.36 Ans.
-80
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 127
FIRST PAGES
Chapter 5 127
(d) ÃA, ÃB = 15, -25 kpsi, |ÃB|ÃA| =25/15 > 1,
(109 - 30)15 -25 1
Eq. (5-32b): - =
109(30) 109 n
n = 1.69 Ans.
OB 4.25
(a) n = = = 1.50
OA 2.83
OD 4.24 B
(a)
(b) n = = = 2.00
B
OC 2.12
OF 15.5
A
(c) n = = = 1.37 (3rd quadrant)
OE 11.3
OH 4.9
(d) n = = = 1.69
OG 2.9
O
A
C
1 cm 10 kpsi
G
D
(b)
H
(d)
E
F
(c)
5-14 Given: AISI 1006 CD steel, F = 0.55 N, P = 8.0 kN, and T = 30 N · m, applying the
DE theory to stress elements A and B with Sy = 280 MPa
32Fl 4P 32(0.55)(103)(0.1) 4(8)(103)
A: Ãx = + = +
Ä„d3 Ä„d2 Ä„(0.0203) Ä„(0.0202)
= 95.49(106) Pa = 95.49 MPa
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 128
FIRST PAGES
128 Solutions Manual " Instructor s Solution Manual to Accompany Mechanical Engineering Design
16T 16(30)
Äxy = = = 19.10(106) Pa = 19.10 MPa
Ä„d3 Ä„(0.0203)
1/2
2 2
à = Ãx + 3Äxy = [95.492 + 3(19.1)2]1/2 = 101.1MPa
Sy 280
n = = = 2.77 Ans.

à 101.1
4P 4(8)(103)
B: Ãx = = = 25.47(106) Pa = 25.47 MPa
Ä„d3 Ä„(0.0202)

16T 4 V 16(30) 4 0.55(103)
Äxy = + = +
Ä„d3 3 A Ä„(0.0203) 3 (Ä„/4)(0.0202)
= 21.43(106) Pa = 21.43 MPa

à = [25.472 + 3(21.432)]1/2 = 45.02 MPa
280
n = = 6.22 Ans.
45.02
5-15 Sy = 32 kpsi
At A, M = 6(190) = 1 140 lbf·in, T = 4(190) = 760 lbf · in.
32M 32(1140)
Ãx = = = 27 520 psi
Ä„d3 Ä„(3/4)3
16T 16(760)
Äzx = = = 9175 psi
Ä„d3 Ä„(3/4)3
2
27 520
Ämax = + 91752 = 16 540 psi
2
Sy 32
n = = = 0.967 Ans.
2Ämax 2(16.54)
MSS predicts yielding
5-16 From Prob. 4-15, Ãx = 27.52 kpsi, Äzx = 9.175 kpsi. For Eq. (5-15), adjusted for coordinates,
1/2

à = 27.522 + 3(9.175)2 = 31.78 kpsi
Sy 32
n = = = 1.01 Ans.

à 31.78
DE predicts no yielding, but it is extremely close. Shaft size should be increased.
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 129
FIRST PAGES
Chapter 5 129
5-17 Design decisions required:
" Material and condition
" Design factor
" Failure model
" Diameter of pin
Using F = 416 lbf from Ex. 5-3
32M
Ãmax =
Ä„d3
1/3
32M
d =
Ä„Ãmax
Decision 1: Select the same material and condition of Ex. 5-3 (AISI 1035 steel, Sy =
81 000).
Decision 2: Since we prefer the pin to yield, set nd a little larger than 1. Further explana-
tion will follow.
Decision 3: Use the Distortion Energy static failure theory.
Decision 4: Initially set nd = 1
Sy Sy
Ãmax = = = 81 000 psi
nd 1
1/3
32(416)(15)
d = = 0.922 in
Ä„(81 000)
Choose preferred size of d = 1.000 in
Ä„(1)3(81 000)
F = = 530 lbf
32(15)
530
n = = 1.274
416
Set design factor to nd = 1.274
Adequacy Assessment:
Sy 81 000
Ãmax = = = 63 580 psi
nd 1.274
1/3
32(416)(15)
d = = 1.000 in (OK )
Ä„(63 580)
Ä„(1)3(81 000)
F = = 530 lbf
32(15)
530
n = = 1.274 (OK)
416
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 130
FIRST PAGES
130 Solutions Manual " Instructor s Solution Manual to Accompany Mechanical Engineering Design
5-18 For a thin walled cylinder made of AISI 1018 steel, Sy = 54 kpsi, Sut = 64 kpsi.
The state of stress is
pd p(8) pd
Ãt = = = 40p, Ãl = = 20p, Ãr =-p
4t 4(0.05) 8t
These three are all principal stresses. Therefore,
1

à = " [(Ã1 - Ã2)2 + (Ã2 - Ã3)2 + (Ã3 - Ã1)2]1/2
2
1
= " [(40p - 20p)2 + (20p + p)2 + (-p - 40p)2]
2
= 35.51p = 54 Ò! p = 1.52 kpsi (for yield) Ans.
. .
For rupture, 35.51p = 64 Ò! p = 1.80 kpsi Ans.
5-19 For hot-forged AISI steel w = 0.282 lbf/in3, Sy = 30 kpsi and ½ = 0.292. Then Á = w/g =
2
0.282/386 lbf · s2/in; ri = 3in; ro = 5in; ri2 = 9; ro = 25; 3 + ½ = 3.292; 1 + 3½ = 1.876.
Eq. (3-55) for r = ri becomes

3 + ½ 1 + 3½
2
Ãt = ÁÉ2 2ro + ri2 1 -
8 3 + ½
Rearranging and substituting the above values:

Sy 0.282 3.292 1.876
= 50 + 9 1 -
É2 386 8 3.292
= 0.016 19
Setting the tangential stress equal to the yield stress,
1/2
30 000
É = = 1361 rad/s
0.016 19
or n = 60É/2Ä„ = 60(1361)/(2Ä„)
= 13 000 rev/min
Now check the stresses at r = (rori)1/2 , or r = [5(3)]1/2 = 3.873 in

3 + ½
Ãr = ÁÉ2 (ro - ri)2
8

0.282É2 3.292
= (5 - 3)2
386 8
= 0.001 203É2
Applying Eq. (3-55) for Ãt

0.282 3.292 9(25) 1.876(15)
Ãt = É2 9 + 25 + -
386 8 15 3.292
= 0.012 16É2
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 131
FIRST PAGES
Chapter 5 131
Using the Distortion-Energy theory
1/2

à = Ãt2 - ÃrÃt + Ãr2 = 0.011 61É2
1/2
30 000
Solving É = = 1607 rad/s
0.011 61
So the inner radius governs and n = 13 000 rev/min Ans.
5-20 For a thin-walled pressure vessel,
di = 3.5 - 2(0.065) = 3.37 in
p(di + t)
Ãt =
2t
500(3.37 + 0.065)
Ãt = = 13 212 psi
2(0.065)
pdi 500(3.37)
Ãl = = = 6481 psi
4t 4(0.065)
Ãr =-pi =-500 psi
These are all principal stresses, thus,
1

à = " {(13 212 - 6481)2 + [6481 - (-500)]2 + (-500 - 13 212)2}1/2
2

à = 11 876 psi
Sy 46 000 46 000
n = = =

à à 11 876
= 3.87 Ans.
5-21 Table A-20 gives Sy as 320 MPa. The maximum significant stress condition occurs at ri
where Ã1 = Ãr = 0, Ã2 = 0, and Ã3 = Ãt. From Eq. (3-49) for r = ri , pi = 0,
2
2ro po 2(1502) po
Ãt =- =- =-3.6po
2
ro - ri2 1502 - 1002

à = 3.6po = Sy = 320
320
po = = 88.9MPa Ans.
3.6
5-22 Sut = 30 kpsi, w = 0.260 lbf/in3 , ½ = 0.211, 3 + ½ = 3.211, 1 + 3½ = 1.633. At the inner
radius, from Prob. 5-19

Ãt 3 + ½ 1 + 3½
2
= Á 2ro + ri2 - ri2
É2 8 3 + ½
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 132
FIRST PAGES
132 Solutions Manual " Instructor s Solution Manual to Accompany Mechanical Engineering Design
2
Here ro = 25, ri2 = 9, and so

Ãt 0.260 3.211 1.633(9)
= 50 + 9 - = 0.0147
É2 386 8 3.211
Since Ãr is of the same sign, we use M2M failure criteria in the first quadrant. From Table
A-24, Sut = 31 kpsi, thus,
1/2
31 000
É = = 1452 rad/s
0.0147
rpm = 60É/(2Ä„) = 60(1452)/(2Ä„)
= 13 866 rev/min
Using the grade number of 30 for Sut = 30 000 kpsi gives a bursting speed of 13640 rev/min.
5-23 TC = (360 - 27)(3) = 1000 lbf · in, TB = (300 - 50)(4) = 1000 lbf · in
y
223 lbf 127 lbf
B C
AD
8" 8" 6"
350 lbf
xy plane
In xy plane, MB = 223(8) = 1784 lbf · in and MC = 127(6) = 762 lbf · in.
387 lbf
8" 8" 6"
AD
B C
106 lbf 281 lbf
xz plane
In the xz plane, MB = 848 lbf · in and MC = 1686 lbf · in. The resultants are
MB = [(1784)2 + (848)2]1/2 = 1975 lbf · in
MC = [(1686)2 + (762)2]1/2 = 1850 lbf · in
So point B governs and the stresses are
16T 16(1000) 5093
Äxy = = = psi
Ä„d3 Ä„d3 d3
32MB 32(1975) 20 120
Ãx = = = psi
Ä„d3 Ä„d3 d3
2 1/2
Then
Ãx Ãx 2
ÃA, ÃB = Ä… + Äxy
2 2
Å„Å‚
1/2üÅ‚
òÅ‚20.12 20.12 2 żł
1
ÃA, ÃB = Ä… + (5.09)2
ół þÅ‚
d3 2 2
(10.06 Ä… 11.27)
= kpsi · in3
d3
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 133
FIRST PAGES
Chapter 5 133
Then
10.06 + 11.27 21.33
ÃA = = kpsi
d3 d3
and
10.06 - 11.27 1.21
ÃB = =- kpsi
d3 d3
For this state of stress, use the Brittle-Coulomb-Mohr theory for illustration. Here we use
Sut(min) = 25 kpsi, Suc(min) = 97 kpsi, and Eq. (5-31b) to arrive at
21.33 -1.21 1
- =
25d3 97d3 2.8
Solving gives d = 1.34 in. So use d = 13/8 in Ans.
Note that this has been solved as a statics problem. Fatigue will be considered in the next
chapter.
5-24 As in Prob. 5-23, we will assume this to be statics problem. Since the proportions are un-
changed, the bearing reactions will be the same as in Prob. 5-23. Thus
xy plane: MB = 223(4) = 892 lbf · in
xz plane: MB = 106(4) = 424 lbf · in
So
Mmax = [(892)2 + (424)2]1/2 = 988 lbf · in
32MB 32(988) 10 060
Ãx = = = psi
Ä„d3 Ä„d3 d3
Since the torsional stress is unchanged,
Äxz = 5.09/d3 kpsi
Å„Å‚
1/2üÅ‚
òÅ‚ 10.06 10.06 2 żł
1
ÃA, ÃB = Ä… + (5.09)2
ół þÅ‚
d3 2 2
ÃA = 12.19/d3 and ÃB =-2.13/d3
Using the Brittle-Coulomb-Mohr, as was used in Prob. 5-23, gives
12.19 -2.13 1
- =
25d3 97d3 2.8
Solving gives d = 11/8 in. Ans.
5-25 (FA)t = 300 cos 20 = 281.9 lbf, (FA)r = 300 sin 20 = 102.6 lbf
3383
T = 281.9(12) = 3383 lbf · in, (FC)t = = 676.6 lbf
5
(FC)r = 676.6 tan 20 = 246.3 lbf
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 134
FIRST PAGES
134 Solutions Manual " Instructor s Solution Manual to Accompany Mechanical Engineering Design
y
ROy = 193.7 lbf 246.3 lbf ROz = 233.5 lbf 676.6 lbf
A B C A B C
x x
O O
20" 16" 10" 20" 16" 10"
RBy = 158.1 lbf RBz = 807.5 lbf
z
281.9 lbf 102.6 lbf
xy plane xz plane

MA = 20 193.72 + 233.52 = 6068 lbf · in

MB = 10 246.32 + 676.62 = 7200 lbf · in (maximum)
32(7200) 73 340
Ãx = =
Ä„d3 d3
16(3383) 17 230
Äxy = =
Ä„d3 d3
1/2
Sy
2 2
à = Ãx + 3Äxy =
n
2 2 1/2
73 340 17 230 79 180 60 000
+ 3 = =
d3 d3 d3 3.5
d = 1.665 in so use a standard diameter size of 1.75 in Ans.
5-26 From Prob. 5-25,
2 1/2
Ãx Sy
2
Ämax = + Äxy =
2 2n
2 2 1/2
73 340 17 230 40 516 60 000
+ = =
2d3 d3 d3 2(3.5)
d = 1.678 in so use 1.75 in Ans.
5-27 T = (270 - 50)(0.150) = 33 N · m, Sy = 370 MPa
(T1 - 0.15T1)(0.125) = 33 Ò! T1 = 310.6N, T2 = 0.15(310.6) = 46.6N
(T1 + T2) cos 45 = 252.6N
y 107.0 N 252.6 N
163.4 N 252.6 N 89.2 N
300 400 150
300 400 150
A
O z
C
320 N 174.4 N
xy plane
xz plane
B
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 135
FIRST PAGES
Chapter 5 135

MA = 0.3 163.42 + 1072 = 58.59 N · m (maximum)

MB = 0.15 89.22 + 174.42 = 29.38 N · m
32(58.59) 596.8
Ãx = =
Ä„d3 d3
16(33) 168.1
Äxy = =
Ä„d3 d3
2 2 1/2
1/2
596.8 168.1 664.0 370(106)
2 2
à = Ãx + 3Äxy = + 3 = =
d3 d3 d3 3.0
d = 17.5(10-3) m= 17.5mm, so use 18 mm Ans.
5-28 From Prob. 5-27,
2 1/2
Ãx Sy
2
Ämax = + Äxy =
2 2n
2 2 1/2
596.8 168.1 342.5 370(106)
+ = =
2d3 d3 d3 2(3.0)
d = 17.7(10-3) m= 17.7mm, so use 18 mm Ans.
5-29 For the loading scheme shown in Figure (c),
V

F a b 4.4
Mmax = + = (6 + 4.5)
2 2 4 2
M
= 23.1N· m
y
For a stress element at A: B
C x
32M 32(23.1)(103)
A
Ãx = = = 136.2MPa
Ä„d3 Ä„(12)3
The shear at C is
4(F/2) 4(4.4/2)(103)
Äxy = = = 25.94 MPa
3Ä„d2/4 3Ä„(12)2/4
2 1/2
136.2
Ämax = = 68.1MPa
2
Since Sy = 220 MPa, Ssy = 220/2 = 110 MPa, and
Ssy 110
n = = = 1.62 Ans.
Ämax 68.1
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 136
FIRST PAGES
136 Solutions Manual " Instructor s Solution Manual to Accompany Mechanical Engineering Design
For the loading scheme depicted in Figure (d)
2
F a + b F 1 b F a b
Mmax = - = +
2 2 2 2 2 2 2 4
This result is the same as that obtained for Figure (c). At point B, we also have a surface
compression of
-F -F -4.4(103)
Ãy = = - =-20.4MPa
A bd 18(12)
With Ãx =-136.2MPa. From a Mohrs circle diagram, Ämax = 136.2/2 = 68.1MPa.
110
n = = 1.62 MPa Ans.
68.1
5-30 Based on Figure (c) and using Eq. (5-15)
1/2
2
à = Ãx
= (136.22)1/2 = 136.2MPa
Sy 220
n = = = 1.62 Ans.

à 136.2
Based on Figure (d) and using Eq. (5-15) and the solution of Prob. 5-29,
1/2
2 2
à = Ãx - ÃxÃy + Ãy
= [(-136.2)2 - (-136.2)(-20.4) + (-20.4)2]1/2
= 127.2MPa
Sy 220
n = = = 1.73 Ans.

à 127.2
5-31
When the ring is set, the hoop tension in the ring is
w
equal to the screw tension.
dF

2
ri2 pi ro
Ãt = 1 +
2
r2
ro - ri2
r
We have the hoop tension at any radius. The differential hoop tension dF is
dF = wÃt dr

ro 2
wri2 pi ro ro
F = wÃt dr = 1 + dr = wri pi (1)
2
r2
ro - ri2
ri ri
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 137
FIRST PAGES
Chapter 5 137
The screw equation is
T
Fi = (2)
0.2d
From Eqs. (1) and (2)
piri d
F T
pi = =
wri 0.2dwri
dFx
dFx = f piri d¸

2Ä„ 2Ä„
f T w
Fx = f piwri d¸ = ri d¸
0.2dwri o
o
2Ä„ f T
= Ans.
0.2d
5-32
(a) From Prob. 5-31, T = 0.2Fid
T 190
Fi = = = 3800 lbf Ans.
0.2d 0.2(0.25)
(b) From Prob. 5-31, F = wri pi
F Fi 3800
pi = = = = 15 200 psi Ans.
wri wri 0.5(0.5)


2
2
pi ri2 + ro
ri2 pi ro
(c) Ãt = 1 + =
2 2
r
ro - ri2 ro - ri2
r=ri
15 200(0.52 + 12)
= = 25 333 psi Ans.
12 - 0.52
Ãr =-pi =-15 200 psi
Ã1 - Ã3 Ãt - Ãr
(d) Ämax = =
2 2
25 333 - (-15 200)
= = 20 267 psi Ans.
2
1/2
2 2
à = ÃA + ÃB - ÃAÃB
= [25 3332 + (-15 200)2 - 25 333(-15 200)]1/2
= 35 466 psi Ans.
(e) Maximum Shear hypothesis
Ssy 0.5Sy 0.5(63)
n = = = = 1.55 Ans.
Ämax Ämax 20.267
Distortion Energy theory
Sy 63
n = = = 1.78 Ans.

à 35 466
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 138
FIRST PAGES
138 Solutions Manual " Instructor s Solution Manual to Accompany Mechanical Engineering Design
5-33
re The moment about the center caused by force F
1"R
is Fre where re is the effective radius. This is
1"
R
2
balanced by the moment about the center
caused by the tangential (hoop) stress.

ro
Fre = rÃtw dr
ri
t

2
wpiri2 ro ro
r
= r + dr
2
r
ro - ri2
ri

2
wpiri2 ro - ri2 ro
2

re = + ro ln
2
2 ri
F ro - ri2
From Prob. 5-31, F = wri pi. Therefore,

ro
ri 2 - ri2 ro
2
re = + ro ln
2
2 ri
ro - ri2
For the conditions of Prob. 5-31, ri = 0.5 and ro = 1in

0.5 12 - 0.52 1
re = + 12 ln = 0.712 in
12 - 0.52 2 0.5
5-34 ´nom = 0.0005 in
(a) From Eq. (3-57)

30(106)(0.0005) (1.52 - 12)(12 - 0.52)
p = = 3516 psi Ans.
(13) 2(1.52 - 0.52)
Inner member:

R2 + ri2 12 + 0.52
Eq. (3-58) (Ãt)i =-p =-3516 =-5860 psi
R2 - ri2 12 - 0.52
(Ãr)i =-p =-3516 psi
1/2
2 2
Eq. (5-13) Ãi = ÃA - ÃAÃB + ÃB
= [(-5860)2 - (-5860)(-3516) + (-3516)2]1/2
= 5110 psi Ans.
Outer member:

1.52 + 12
Eq. (3-59) (Ãt)o = 3516 = 9142 psi
1.52 - 12
(Ãr)o =-p =-3516 psi

Ão = [91422 - 9142(-3516) + (-3516)2]1/2
Eq. (5-13)
= 11 320 psi Ans.
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 139
FIRST PAGES
Chapter 5 139
(b) For a solid inner tube,

30(106)(0.0005) (1.52 - 12)(12)
p = = 4167 psi Ans.
1 2(12)(1.52)
(Ãt)i =-p =-4167 psi, (Ãr)i =-4167 psi
Ãi = [(-4167)2 - (-4167)(-4167) + (-4167)2]1/2 = 4167 psi Ans.

1.52 + 12
(Ãt)o = 4167 = 10 830 psi, (Ãr)o =-4167 psi
1.52 - 12

Ão = [10 8302 - 10 830(-4167) + (-4167)2]1/2 = 13 410 psi Ans.
5-35 Using Eq. (3-57) with diametral values,

207(103)(0.02) (752 - 502)(502 - 252)
p = = 19.41 MPa Ans.
(503) 2(752 - 252)

502 + 252
Eq. (3-58) (Ãt)i =-19.41 =-32.35 MPa
502 - 252
(Ãr)i =-19.41 MPa
Ãi = [(-32.35)2 - (-32.35)(-19.41) + (-19.41)2]1/2
Eq. (5-13)
= 28.20 MPa Ans.

752 + 502
(Ãt)o = 19.41 = 50.47 MPa,
Eq. (3-59)
752 - 502
(Ãr)o =-19.41 MPa

Ão = [50.472 - 50.47(-19.41) + (-19.41)2]1/2 = 62.48 MPa Ans.
5-36 Max. shrink-fit conditions: Diametral interference ´d = 50.01 - 49.97 = 0.04 mm. Equa-
tion (3-57) using diametral values:

207(103)0.04 (752 - 502)(502 - 252)
p = = 38.81 MPa Ans.
503 2(752 - 252)

502 + 252
Eq. (3-58): (Ãt)i =-38.81 =-64.68 MPa
502 - 252
(Ãr)i =-38.81 MPa
Eq. (5-13):
1/2
Ãi = (-64.68)2 - (-64.68)(-38.81) + (-38.81)2
= 56.39 MPa Ans.
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 140
FIRST PAGES
140 Solutions Manual " Instructor s Solution Manual to Accompany Mechanical Engineering Design
5-37
1.9998 1.999
´ = - = 0.0004 in
2 2
Eq. (3-56)

p(1) 22 + 12 p(1) 12 + 0
0.0004 = + 0.211 + - 0.292
14.5(106) 22 - 12 30(106) 12 - 0
p = 2613 psi
Applying Eq. (4-58) at R,

22 + 12
(Ãt)o = 2613 = 4355 psi
22 - 12
(Ãr)o =-2613 psi, Sut = 20 kpsi, Suc = 83 kpsi


Ão 2613

= < 1, 4" use Eq. (5-32a)
ÃA
4355
h = Sut/ÃA = 20/4.355 = 4.59 Ans.
5-38 E = 30(106) psi, ½ = 0.292, I = (Ä„/64)(24 - 1.54) = 0.5369 in4
Eq. (3-57) can be written in terms of diameters,



do
E´d 2 - D2 D2 - di2
30(106) (22 - 1.752)(1.752 - 1.52)

p = = (0.002 46)
2
D 1.75 2(1.752)(22 - 1.52)
2D2 do - di2
= 2997 psi = 2.997 kpsi
Outer member:
1.752(2.997)
Outer radius: (Ãt)o = (2) = 19.58 kpsi, (Ãr)o = 0
22 - 1.752

1.752(2.997) 22
Inner radius: (Ãt)i = 1 + = 22.58 kpsi, (Ãr)i =-2.997 kpsi
22 - 1.752 1.752
Bending:
6.000(2/2)
ro: (Ãx)o = = 11.18 kpsi
0.5369
6.000(1.75/2)
ri: (Ãx)i = = 9.78 kpsi
0.5369
Torsion: J = 2I = 1.0738 in4
8.000(2/2)
ro: (Äxy)o = = 7.45 kpsi
1.0738
8.000(1.75/2)
ri: (Äxy)i = = 6.52 kpsi
1.0738
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 141
FIRST PAGES
Chapter 5 141
Outer radius is plane stress
Ãx = 11.18 kpsi, Ãy = 19.58 kpsi, Äxy = 7.45 kpsi
Sy 60

Eq. (5-15) Ã = [11.182 - (11.18)(19.58) + 19.582 + 3(7.452)]1/2 = =
no no
60
21.35 = Ò! no = 2.81 Ans.
no
z
Inner radius, 3D state of stress
 2.997 kpsi
9.78 kpsi
22.58 kpsi
x y
6.52 kpsi
From Eq. (5-14) with Äyz = Äzx = 0
1 60

à = " [(9.78 - 22.58)2 + (22.58 + 2.997)2 + (-2.997 - 9.78)2 + 6(6.52)2]1/2 =
ni
2
60
24.86 = Ò! ni = 2.41 Ans.
ni
5-39 From Prob. 5-38: p = 2.997 kpsi, I = 0.5369 in4, J = 1.0738 in4
Inner member:

(0.8752 + 0.752)
Outer radius: (Ãt)o =-2.997 =-19.60 kpsi
(0.8752 - 0.752)
(Ãr)o =-2.997 kpsi
2(2.997)(0.8752)
Inner radius: (Ãt)i =- =-22.59 kpsi
0.8752 - 0.752
(Ãr)i = 0
Bending:
6(0.875)
ro: (Ãx)o = = 9.78 kpsi
0.5369
6(0.75)
ri: (Ãx)i = = 8.38 kpsi
0.5369
Torsion:
8(0.875)
ro: (Äxy)o = = 6.52 kpsi
1.0738
8(0.75)
ri: (Äxy)i = = 5.59 kpsi
1.0738
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 142
FIRST PAGES
142 Solutions Manual " Instructor s Solution Manual to Accompany Mechanical Engineering Design
The inner radius is in plane stress: Ãx = 8.38 kpsi, Ãy =-22.59 kpsi, Äxy = 5.59 kpsi
Ãi = [8.382 - (8.38)(-22.59) + (-22.59)2 + 3(5.592)]1/2 = 29.4 kpsi
Sy 60
ni = = = 2.04 Ans.
Ãi 29.4
Outer radius experiences a radial stress, Ãr
1/2
1

Ão = " (-19.60 + 2.997)2 + (-2.997 - 9.78)2 + (9.78 + 19.60)2 + 6(6.52)2
2
= 27.9 kpsi
60
no = = 2.15 Ans.
27.9
5-40

2
1 KI ¸ KI ¸ ¸ 3¸
Ãp = 2" cos Ä… " sin cos sin
2 2 2 2 2
2Ä„r 2Ä„r
1/2
2
KI ¸ ¸ 3¸
+ " sin cos cos
2 2 2
2Ä„r

1/2
KI ¸ ¸ ¸ 3¸ ¸ ¸ 3¸
= " cos Ä… sin2 cos2 sin2 + sin2 cos2 cos2
2 2 2 2 2 2 2
2Ä„r

KI ¸ ¸ ¸ KI ¸ ¸
= " cos Ä… cos sin = " cos 1 Ä… sin
2 2 2 2 2
2Ä„r 2Ä„r
Plane stress: The third principal stress is zero and

KI ¸ ¸ KI ¸ ¸
Ã1 = " cos 1 + sin , Ã2 = " cos 1 - sin , Ã3 = 0 Ans.
2 2 2 2
2Ä„r 2Ä„r
Plane strain: Ã1 and Ã2 equations still valid however,
KI ¸
Ã3 = ½(Ãx + Ãy) = 2½ " cos Ans.
2
2Ä„r
5-41 For ¸ = 0 and plane strain, the principal stress equations of Prob. 5-40 give
KI KI
Ã1 = Ã2 = " , Ã3 = 2½ " = 2½Ã1
2Ä„r 2Ä„r
1
(a) DE: " [(Ã1 - Ã1)2 + (Ã1 - 2½Ã1)2 + (2½Ã1 - Ã1)2]1/2 = Sy
2
Ã1 - 2½Ã1 = Sy

1 1
For ½ = , 1 - 2 Ã1 = Sy Ò! Ã1 = 3Sy Ans.
3 3
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 143
FIRST PAGES
Chapter 5 143
(b) MSS: Ã1 - Ã3 = Sy Ò! Ã1 - 2½Ã1 = Sy
1
½ = Ò! Ã1 = 3Sy Ans.
3
2
Ã3 = Ã1
3

Radius of largest circle


2
1 1, 2
1 2 Ã1
3
R = Ã1 - Ã1 =
2 3 6
5-42 (a) Ignoring stress concentration
F = Sy A = 160(4)(0.5) = 320 kips Ans.
(b) From Fig. 6-36: h/b = 1, a/b = 0.625/4 = 0.1563, ² = 1.3

F
Eq. (6-51) 70 = 1.3 Ä„(0.625)
4(0.5)
F = 76.9 kips Ans.
"
5-43 Given: a = 12.5mm, KIc = 80 MPa · m, Sy = 1200 MPa, Sut = 1350 MPa
350 350 - 50
ro = = 175 mm, ri = = 150 mm
2 2
12.5
a/(ro - ri) = = 0.5
175 - 150
150
ri/ro = = 0.857
175
.
Fig. 5-30: ² = 2.5
"
Eq. (5-37): KIc = ²Ã Ä„a

80 = 2.5Ã Ä„(0.0125)
à = 161.5MPa
Eq. (3-50) at r = ro:
ri2 pi
Ãt = (2)
2
ro - ri2
1502 pi(2)
161.5 =
1752 - 1502
pi = 29.2MPa Ans.
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 144
FIRST PAGES
144 Solutions Manual " Instructor s Solution Manual to Accompany Mechanical Engineering Design
5-44
(a) First convert the data to radial dimensions to agree with the formulations of Fig. 3-33.
Thus
ro = 0.5625 Ä… 0.001in
ri = 0.1875 Ä… 0.001 in
Ro = 0.375 Ä… 0.0002 in
Ri = 0.376 Ä… 0.0002 in
The stochastic nature of the dimensions affects the ´ =|Ri| -|Ro| relation in
Eq. (3-57) but not the others. Set R = (1/2)(Ri + Ro) = 0.3755. From Eq. (3-57)
2

ro
E´ - R2 R2 - ri2

p =
2
R
2R2 ro - ri2
Substituting and solving with E = 30 Mpsi gives
p = 18.70(106) ´
Since ´ = Ri - Ro
Å» Å» Å»
´ = Ri - Ro = 0.376 - 0.375 = 0.001 in
and
2 2 1/2
0.0002 0.0002
ô = +
Ć
4 4
= 0.000 070 7 in
Then
ô 0.000 070 7
Ć
C´ = = = 0.0707
Å»
0.001
´
The tangential inner-cylinder stress at the shrink-fit surface is given by
Å»
R2 +Ż2
ri
Ãit =-p
Å»
R2 -Ż2
ri

0.37552 + 0.18752
=-18.70(106) ´
0.37552 - 0.18752
=-31.1(106) ´
Å»
Ãit =-31.1(106) ´ =-31.1(106)(0.001)
Å»
=-31.1(103) psi
Also
ÃÃit =|C´Ãit| =0.0707(-31.1)103
Ć Ż
= 2899 psi
Ãit = N(-31 100, 2899) psi Ans.
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 145
FIRST PAGES
Chapter 5 145
(b) The tangential stress for the outer cylinder at the shrink-fit surface is given by

ro + R2
Ż2 Ż
Ãot = p
ro - R2
Ż2 Ż

0.56252 + 0.37552
= 18.70(106) ´
0.56252 - 0.37552
= 48.76(106) ´ psi
Ãot = 48.76(106)(0.001) = 48.76(103) psi
Å»
ÃÃot = C´Ãot = 0.0707(48.76)(103) = 34.45 psi
Ć Ż
Ãot = N(48 760, 3445) psi Ans.
5-45 From Prob. 5-44, at the fit surface Ãot = N(48.8, 3.45) kpsi. The radial stress is the fit
pressure which was found to be
p = 18.70(106) ´
p = 18.70(106)(0.001) = 18.7(103) psi
Å»
Ãp = C´ p = 0.0707(18.70)(103)
Ć Ż
= 1322 psi
and so
p = N(18.7, 1.32) kpsi
and
Ãor =-N(18.7, 1.32) kpsi
These represent the principal stresses. The von Mises stress is next assessed.
ÃA = 48.8 kpsi, ÃB =-18.7 kpsi
Å» Å»
k = ÃB/ÃA =-18.7/48.8 =-0.383
Å» Å»

à = ÃA(1 - k + k2)1/2
Å» Å»
= 48.8[1 - (-0.383) + (-0.383)2]1/2
= 60.4 kpsi


Ãà = Cpà = 0.0707(60.4) = 4.27 kpsi
Ć Ż
Using the interference equation
Å»
S -Å»
Ã
z =-
1/2
2 2
ÃS +Ć
Ć ÃÃ

95.5 - 60.4
=- =-4.5
[(6.59)2 + (4.27)2]1/2
pf = Ä… = 0.000 003 40,
or about 3 chances in a million. Ans.
budynas_SM_ch05.qxd 11/29/2006 15:00 Page 146
FIRST PAGES
146 Solutions Manual " Instructor s Solution Manual to Accompany Mechanical Engineering Design
5-46
pd 6000N(1, 0.083 33)(0.75)
Ãt = =
2t 2(0.125)
= 18N(1, 0.083 33) kpsi
pd 6000N(1, 0.083 33)(0.75)
Ãl = =
4t 4(0.125)
= 9N(1, 0.083 33) kpsi
Ãr =-p =-6000N(1, 0.083 33) kpsi
These three stresses are principal stresses whose variability is due to the loading. From
Eq. (5-12), we find the von Mises stress to be
1/2
(18 - 9)2 + [9 - (-6)]2 + (-6 - 18)2

à =
2
= 21.0 kpsi


Ãà = Cpà = 0.083 33(21.0) = 1.75 kpsi
Ć Ż
Å»
S -Å»
Ã
z =-
1/2
2 2
ÃS +Ć
Ć ÃÃ

50 - 21.0
= =-6.5
(4.12 + 1.752)1/2
The reliability is very high
.
R = 1 - (6.5) = 1 - 4.02(10-11) = 1 Ans.


Wyszukiwarka

Podobne podstrony:
budynas SM ch11
budynas SM ch12
budynas SM ch09
budynas SM ch16
budynas SM ch20
budynas SM ch02
budynas SM ch14
budynas SM ch15
budynas SM ch01
ch05
ch05
Fanuc 6M [SM] PM956 17 3
ch05(
5217 15492 1 SM Recenzje 03
ch05
ch05

więcej podobnych podstron