Tematy z fizyki ciała stałego
39. Statystyki kwantowe: podaj założenia dla rozkładu Fermiego-Diraca oraz Bosego-
Einsteina. Zdefiniuj energiÄ™ Fermiego dla T=0 K oraz dla dowolnej temperatury
40. Fale materii, hipoteza de Broglie. Omów doświadczenie Davissona-Germana.
41. Struktura kryształu. Rodzaje wiązań w krysztale. Omów wiązanie wan der Waalsa,
narysuj zależność całkowitej energii potencjalnej od wzajemnej odległości atomów.
42. Omów wiązanie jonowe i kowalentne. Narysuj energie potencjalne w funkcji wzajemnej
odległości atomów.
43. Podaj podstawowe założnia dotyczące równania Schrodingera. Napisz równanie zależne
od czasu i stacjonarne równanie Schrodingera, objaśnij wielkości w nich występujące oraz
podaj własności jakie musi spełniać funkcja falowa.
44. Co to jest relacja dyspersji, jaka wielkość występująca w równaniu Schodingera ma istotne
znaczenia dla charakteru relacji dyspersji; uzasadnij i podaj przykłady
45. Korzystając z stacjonarnego równania Schrodingera rozwiąż zagadnienie elektronu
znajdującego się w studni potencjału o nieskończonych brzegach. Podaj założenia, omów
warunki brzegowe i korzystająć z zasady nieoznaczoności Heisenberga wyjaśnij dlaczego
elektron nie może znajdować się w stanie enrgetycznym równym zero. Narysuj relację
dyspersji
46. Podaj założenia dla modelu Fermiego elektronów swobodnych. Omów warunki brzegowe,
znajdz relację dyspersji, podaj zależność graficznie. Dla T=0K oraz dla układu N elektronów
swobodnych znajdz wyrażenie: na wektor falowego k na powierzchni Fermiego oraz na
F
energiÄ™ Fermiego µF. Obliczenia należy prowadzić w przestrzeni wektora falowego k (kx ky
µ
µ
µ
kz). Objaśnij każdy krok prowadzonych obliczeń.
47. Korzystając z modelu Fermiego dla gazu elektronowego objaśnij zjawisko
przewodnictwa. Z jakich podstawowych założeń mechaniki kwantowej należy korzystać.
48. Podaj założenia modelu Kroniga Penneya dla pasmowej struktury energetycznej ciała
stałego. Jakie własności funkcji falowej należy wykorzystać, żeby dostać relacje dyspersji,
omów każdą z tych własnosci.
49. Uzasadnij dlaczego relacja dyspersji w modelu Kroniga Penneya w postaci :
P sin(Ä…a)/(Ä…a) + cos(Ä…a) = cos(ka)
Ä… Ä… Ä…
Ä… Ä… Ä…
Ä… Ä… Ä…
prowadzi do pasmowej struktury energetycznej ciała stałego.
(objaśnienia: P -wielkość określająca energię wiązania elektronu w periodycznej studni
potencjaÅ‚u, a- rozmiary studni potencjaÅ‚u, k wektor falowy, Ä… = 8Ä„2mh-2µ )
1
50. KorzystajÄ…c z relacji dyspersji w modelu Kroniga Penneya w postaci :
P sin(Ä… Ä…a) + cos(Ä…
Ä…a)/(Ä… Ä…a) = cos(ka)
Ä… Ä… Ä…
Ä… Ä… Ä…
i wiedząc, że prametr P jest związany z wysokością bariery potencjału wyprowadz relacje
dyspersji dla elektronu swobodnego oraz dla elektronu w studni potencjału o nieskończonych
brzegach. Narysuj relacje dyspersji dla wszystkich przypadków.
51. Co to jest strefa Brillouina, w jakim modelu struktury energetycznej ciała stałego
występuje. Dla przypadku dwuwymiarowego w przestrzeni faziwej wektora falowego k
narysuj krzywe stałej energii wewnątrz pierwszej strefy Brillouina dla słabego i silnego
wiązania elektronu w periodycznej studni potencjału. Uzasadnij dlaczego na początku i-szej
strefy relacja dyspersji jest kwadratowa.
53. Wyprowadz wzór na masę efektywną elektronu w krysztale, podaj z jakich
podstawowych założeń mechaniki kwantowej należy skorzystać i udowodnij, że masa
efektywna elektronu swobodnego jest równa jego masie bezwładnej.
54. Opisz sposób tworzenia półprzwodników typu n i p. Narysuj ich strukture energetyczną z
zaznaczeniem poziomu Fermiego (T=0K).
55. Złącze p-n : narysuj strukturę energetyczną w stanie równowagi termodynamicznej.
Omów zasadę działania złącza jako układu prostującego , narysuj rozkład bariery na złączu
dla napięcia polaryzacji w kierunku zaporowym i w kierunku przewodzenia.
56. Co są nadprzewodniki, podaj charakterystyczne właściwości substancji
nadprzewodzących, narysuj i objaśnij krzywe progowe.
57. Podaj założenia teorii BCS, w jaki sposób można wyliczyc rozmiar typowej pary Coopera.
58. Nadprzewodniki I i II rodzaju, podaj kryteria i narysuj odpowiednie krzywe progowe.
59. Fonony; fale sprężyste w krysztale w zakresie fal krótkich. Napisz równanie ruchu fal
sprężystych w krysztale . Zdefiniuj strefy Brillouina dla fononów.
60. Znając relację dyspersji dla fonów:
É = (4C1/M)1/2|sin(1/2ka)|
É | |
É | |
É | |
wykaż,że prędkość grupowa przyjmuje wartość zero na końcach 1-szej strefy Brillouina.
2
Kraków styczeń.2001
Tematy do egzaminu z fizyki (termin zerowy)
Kartkę należy podpisać: Imię, nazwisko, grupa
Kartki proszę ponumerować.
Egzamin trwa 90min. Pozytywną ocenę można uzyskać tylko wówczas, gdy
zostanÄ… podane odpowiedzi na cztery pytania
Po ukończonym egzaminie proszę pracę włożyć do indeksu.
Proszę zaznaczyć, powyżej jakiej oceny wpisać ją do indeksu. Pozytywną
ocenę można poprawić poprzez egzamin ustny.
1. Znając transformację współrzędnych Lorentza, wyprowadz transformację prędkości.
Wykaż, że gdy cząstka w układzie S porusza się z prędkością światła c, a układ S porusza
się względem układu S z prędkością v wzdłuż osi x-ów to zasada niezmienniczości
prędkości światła jest niespełniona dla transformacji Galileusza, natomiast jest spełniona
dla
transformacji Lorentza.
2. Napisz równanie ruchu Eulera, dla bryły sztywnej, objaśnij wielkości w nim występujące.
Rozwiąż to równanie dla swobodnie obracającej się jednorodnej kuli. Podaj założenia dla
takiego przypadku ruchu obrotowego.
3. Korzystając z prawa Ampera-Laplace a , które opisuje wyrażenie na pole magnetyczne
wytwarzane przez przewodnik z prądem o natężeniu I , wylicz pole magnetyczne ,które
wytwarza ładunek q poruszający się z prędkością v. Objaśnij wielkości występujące we
wzorach.
4. Dla kondensatora, do okładek którego przyłożono pole :
É
É
É
E = E0 eiÉt
wylicz powstałe pole B. Podaj jakie prawa stosujesz oraz opisz sposób obliczeń. Uzasadnij
wybór konturu i powierzchni całkowania.
5. Podaj schematycznie sposób uzyskiwania oraz odtworzenia hologramu przedmiotu
przezroczystego i nieprzezroczystego. Uzasadnij dlaczego wiązka laserowa spełnia
3
konieczne warunki do tworzenia hologramów.
Wyniki egzaminu zostaną podane na tablicy ogłoszeń (C-1, piętro 3-cie)
W poniedziałek 22 stycznia br. o godz 17-tej.
Zestaw 2-gi
Tarnów 19.02.2002
Tematy do egzaminu z fizyki (termin poprawkowy)
Kartkę należy podpisać: Imię, nazwisko, grupa
Kartki proszę ponumerować.
Egzamin trwa 60min. Pozytywną ocenę można uzyskać tylko wówczas, gdy
zostanÄ… podane odpowiedzi na cztery pytania
1.Podaj założenia mechaniki klasycznej, wyprowadz transformację
Galileusza i udowodnij, że przeprowadza układ inercjalny w układ
inercjalny.
2.Podaj przykład kiedy wektor momentu pędu nie jest równoległy do osi
obrotu bryły sztywnej. Podaj definicje osi głównych.
3. Opisz zjawisko dyfrakcji . Podaj sposób wyliczenia amplitudy
wypadkowej. Podaj i zilustruj definicję zdolności rozdzielczej Reyleigh a
4. Dla przypadku statycznego podaj w postaci całkowej i różniczkowej
prawa dla pola E i B. Objaśnij wielkości występujące we wzorach oraz
opisz jakie
własności pól opisują te prawa.
Wyniki egzaminu zostaną podane na tablicy ogłoszeń 25 lutego br.
4
Zestaw 2-gi
Kraków 22.02.2002
Elektronika i Telekomunikacja
Tematy do egzaminu z fizyki ( 1-szy termin poprawkowy)
Kartkę należy podpisać: Imię, nazwisko, grupa
Kartki proszę ponumerować.
Egzamin trwa 60min. Pozytywną ocenę można uzyskać tylko wówczas, gdy
zostanÄ… podane odpowiedzi na cztery pytania
1. KorzystajÄ…c z definicji pracy wyprowadz, w zakresie stosowania
mechaniki klasycznej, wyrażenia na energię kinetyczną i potencjalną.
Objaśnij kolejne etapy przekształceń. Udowodnij, że pole grawitacyjne
Ziemi jest polem zachowawczym
2. Podaj warunki jakie muszą spełniać zródła synchroniczne, ażeby
stanowiły antenę kierunkową. Podaj i zilustruj definicję zdolności
rozdzielczej Reyleigh a
3.Podaj w postaci całkowej i różniczkowej równania Maxwella. Omów
własności pół E i B oraz zjawiska jakie te prawa opisują.
4. Podaj sposoby uzyskiwania rozkładu antyboltzmannowskiego. Narysuj
przykładowo strukturę energetyczną, dla której uzyskuje się akcję
laserowÄ….
5
Wyniki egzaminu zostaną podane na tablicy ogłoszeń (C-1, piętro 3-cie)
W poniedziałek 25 lutego br.
Kraków 28.02.02
Elektronika i Telekomunikacja Tematy do egzaminu z fizyki (termin 2-gi
poprawkowy)
Kartkę należy czytelnie podpisać: Imię, nazwisko, grupa
Kartki proszę ponumerować.
Egzamin trwa 60min. Pozytywną ocenę można uzyskać tylko wówczas, gdy
zostanÄ… podane odpowiedzi na wszystkie pytania
1.Podaj zasadę korespondencji i wykorzystaj ją do znanych zależności w
teorii względności w relacji do analogicznych zależności w mechanice
klasycznej.
2. Mając dowolną bryłę sztywną, dla której chwilowa oś obrotu przechodzi
przez początek układu współrzędnych, znajdz jedną ze składowych
wektora momentu pędu i wylicz odpowiednie składowe tensora momentu
bezwładności
Pomocnicze zależności dla iloczynu wektorowego:
A× (B × C) = B(A " C) - C(A " B)
3. Prędkość grupowa i fazowa w ruchu falowym: podaj definicje, wzajemną
relację między tymi wielkościami. Jak definiujemy ośrodek z dyspersją
normalnÄ… i anomalnÄ….
4. Dla kondensatora, do okładek którego przyłożono pole :
6
É
É
É
E = E0 eiÉt
wylicz powstałe pole B. Podaj jakie prawa stosujesz oraz opisz sposób
obliczeń.
Wyniki egzaminu zostaną podane na tablicy ogłoszeń 11 marca br.
Kraków styczeń 2001
Tematy do egzaminu z fizyki (termin 1-szy)
Kartkę należy podpisać: Imię, nazwisko, grupa
Kartki proszę ponumerować.
Egzamin trwa 90min. Pozytywną ocenę można uzyskać tylko wówczas, gdy
zostanÄ… podane odpowiedzi na cztery pytania
Po ukończonym egzaminie proszę pracę włożyć do indeksu.
Proszę zaznaczyć, powyżej jakiej oceny wpisać ją do indeksu. Pozytywną
ocenę można poprawić poprzez egzamin ustny.
1.Podaj założenia transformacji współrzędnych Lorentza, wykaż, że należy uwzględnić
również transformację czasu. Omów i podaj związki na dylatację czasu oraz kontrakcję
przestrzeni jako efekty transformacji Lorentza.
2. Omów zjawisko dyfrakcji na dwóch szczelinach.
ZnajÄ…c amplitudÄ™ wypadkowÄ… dla dyfrakcji na jednej szczelinie:
A =Ao [sin(Ä„/ b sin¸) (Ä„/ b sin¸)-1]
Ä„/ ¸ Ä„/ ¸
Ä„/ ¸ Ä„/ ¸
Ä„/ ¸ Ä„/ ¸
wylicz amplitudę wypadkową dla dyfrakcji na dwóch szczelinach zakładając, że amplitudy
składowe są takie same.
7
Zestaw 1-szy
Elektronika i Telekomunikacja
(1-szy termin poprawkowy) 22.02.02
Kartkę należy podpisać: Imię, nazwisko, grupa
Kartki proszę ponumerować.
Egzamin trwa 60min. Pozytywną ocenę można uzyskać tylko wówczas, gdy
zostanÄ… podane odpowiedzi na cztery pytania
1.Czy laboratorium na powierzchni Ziemi jest dobrym układem
inercjalnym? Podaj założenia mechaniki klasycznej. Omów oddziaływania
fundamentalne występujące w przyrodzie.
2. Napisz równanie ruchu Eulera, dla bryły sztywnej, objaśnij
wielkości w nim występujące Rozwiąż to równanie dla swobodnie
obracającego się bąka swobodnego. Podaj założenia dla takiego
przypadku ruchu obrotowego.
3. KorzystajÄ…c z praw Maxwella dla przypadku statycznego opisz
zachowanie się pól E i B przy przejściu na granicy dwóch
ośrodków. Załóż, że j=0 oraz q=0. Opisz kolejne etapy obliczeń.
8
4. JakÄ… interpretacjÄ™ fizycznÄ… ma wektor Poyntinga S. Wylicz S
dla następującego przypadku:
płaska fala elektromagnetyczna ma rozwiązania w postaci:
E = Eo exp[i(É
Ét - kx)]
É
É
B = Bo exp[i(Ét - kx)]
É
É
É
pola E i B mają następujące składowe: E(0,E,0), B(0.0.B) .
Wyniki egzaminu zastaną podane na tablicy ogłoszeń 25 lutego 2002
Zestaw 1-szy
Tarnów 19 luty 2002
Informatyka Stosowana
Tematy do egzaminu z fizyki (termin poprawkowy)
Kartkę należy podpisać: Imię, nazwisko, grupa
Kartki proszę ponumerować.
Egzamin trwa 60min. Pozytywną ocenę można uzyskać tylko wówczas, gdy
zostanÄ… podane odpowiedzi na cztery pytania
1.Podaj założenia mechaniki klasycznej, wyprowadz
transformację Galileusza i udowodnij, że przeprowadza układ
inercjalny w układ inercjalny.
2. Napisz równanie ruchu Eulera, dla bryły sztywnej, objaśnij
wielkości w nim występujące Rozwiąż to równanie dla swobodnie
obracającego się bąka swobodnego. Podaj założenia dla takiego
przypadku ruchu obrotowego.
3. Prędkość grupowa i fazowa w ruchu falowym: podaj definicje,
wzajemną relację między tymi wielkościami. Jak definiujemy
ośrodek z dyspersją normalną i anomalną.
9
4. Podaj w postaci całkowej definicje siły elektromotorycznej.
Zapisz w postaci całkowej i różniczkowej doświadczenie
Faraday a. Skomentuj dlaczego w tym przypadku pole E jest
polem wirowym.
Wyniki egzaminu zostaną podane na tablicy ogłoszeń 25 lutego 2002
Kraków 08.luty 2002
Egzamin z fizyki Elektronika i Telekomunikacja 1-szy termin
Kartkę należy podpisać: Imię, nazwisko, grupa
Kartki proszę ponumerować.
Egzamin trwa 60min. Pozytywną ocenę można uzyskać tylko wówczas, gdy
zostanÄ… podane odpowiedzi na wszystkie pytania
Po ukończonym egzaminie proszę pracę włożyć do indeksu.
1.Podaj założenia Transformacji Lorentza Znając transformację
współrzędnych Lorentza, wyprowadz transformację prędkości.
2. Dla równania ruchu: x=Asin(Ét + Ć) znajdz :
É Ä†
É Ä†
É Ä†
prędkość, przyspieszenie, wyrażenie na siłę, która powoduje
taki ruch oraz wyprowadz wzór na energię kinetyczną i
potencjalną Objaśnij wielkości występujące w równaniu ruchu.
3.KorzystajÄ…c z praw Maxwella dla przypadku statycznego opisz
zachowanie się pól E i B przy przejściu na granicy dwóch
oÅ›rodków scharakteryzowanych przez zespół parametrów µ1, µ1,
µ µ
µ µ
µ µ
oraz µ2, µ2. Załóż, że j=0 oraz q=0. Opisz kolejne etapy obliczeÅ„.
µ µ
µ µ
µ µ
10
4. Zdefiniuj zródła spójne. Omów zjawisko interferencji dwóch
zródeł spójnych. Podaj definicję przesunięcia fazowego oraz
różnicy dróg optycznych. Jakie warunki muszą być spełnione,
żeby interferencja była konstruktywna.
Wyniki egzaminu zostanÄ… podane 12 lutego 2002
Tematy egzaminu z fizyki (termin pierwszy Informatyka
Stosowana Tarnów) 31.10.01
Egzamin trwa 60 min. Należy odpowiedzieć na
wszystkie pytania, żeby uzyskać pozytywną ocenę.
(zestaw 1-szy)
1. Dla kondensatora, do okładek którego przyłożono pole :
É
É
É
E = E0 eiÉt wylicz powstaÅ‚e pole B. Podaj jakie prawa
stosujesz oraz opisz sposób obliczeń. Uzasadnij wybór
konturu i powierzchni całkowania.
2. Podaj schematycznie sposób uzyskiwania oraz odtworzenia
hologramu przedmiotu przezroczystego i nieprzezroczystego.
Uzasadnij dlaczego wiązka laserowa spełnia konieczne
warunki do tworzenia hologramów.
3. Fale materii, hipoteza de Broglie. Omów doświadczenie
Davissona-Germana.
11
. Podaj podstawowe założenia dotyczące równania Schrodingera.
Napisz równanie stacjonarne Schrodingera, objaśnij wielkości w
nim występujące oraz podaj własności jakie musi spełniać funkcja
falowa.
4. Co sÄ… nadprzewodniki, podaj charakterystyczne
właściwości substancji nadprzewodzących, narysuj i objaśnij
krzywe progowe.
Tematy egzaminu z fizyki (termin zerowy Automatyka i
Robotyka) Sem. letni 2000/2001
Egzamin trwa 60 min. Należy odpowiedzieć na
wszystkie pytania, żeby uzyskać pozytywną ocenę.
(zestaw 1-szy)
1.Struktura kryształu. Rodzaje wiązań w krysztale. Omów
wiązanie van der Waalsa, narysuj zależność całkowitej energii
potencjalnej od wzajemnej odległości atomów.
2. Podaj założenia dla modelu Fermiego elektronów
swobodnych. Omów warunki brzegowe, znajdz relację
dyspersji, podaj zależność graficznie. Dla T=0K oraz dla
układu N elektronów swobodnych znajdz wyrażenie: na
wektor falowego k na powierzchni Fermiego oraz na
F
energiÄ™ Fermiego µF. Obliczenia należy prowadzić w
µ
µ
µ
przestrzeni wektora falowego k (kx ky kz). Objaśnij każdy krok
prowadzonych obliczeń.
12
3.Narysuj i objaśnij strukturę energetyczną półprzewodników
samoistnych oraz domieszkowanych typu n i p .
4. Podaj założenia teorii BCS dla niskotemperaturowych
nadprzewodników. Narysuj i objaśnij krzywe charakterystyczne
dla nadprzewodników I i II rodzaju.
Wyniki z egzaminu zostaną podane w połowie czerwca na Tablicy
Ogłoszeń
Tematy egzaminu z fizyki (termin pierwszy Informatyka
Stosowana Tarnów) Sem. letni 2000/2001
Egzamin trwa 60 min. Należy odpowiedzieć na
wszystkie pytania, żeby uzyskać pozytywną ocenę.
(zestaw 2-gi)
Omów zachowanie się wektora E i B na granicy dwóch
1.
oÅ›rodków: opisanych przez staÅ‚e: µ1 µ1 oraz µ2 µ2
µ µ µ µ
µ µ µ µ
µ µ µ µ
2. Opisz budowę i omów działanie wnęki rezonansowej.
3.Podaj założenia modelu pasmowego ciała stałego. Jakie
własności funkcji falowej należy wykorzystać ażeby
otrzymać w postaci ogólnej relację dyspersji. Narysuj
relacjÄ™ dyspersji.
4. Podaj założenia teorii BCS dla zjawiska nadprzewodnictwa
13
Wyniki egzaminu zostaną w połowie lipca podane na Tablicy
Ogłoszeń.
Tematy egzaminu z fizyki (termin zerowy Automatyka i
Robotyka) Sem. letni 2000/2001
Egzamin trwa 60 min. Należy odpowiedzieć na
wszystkie pytania, żeby uzyskać pozytywną ocenę.
(zestaw 2-gi))
1. Omów statystyki kwantowe. Podaj definicję energii
Fermiego.
2. Opisz zjawisko transportu elektrycznego w modelu
Fermiego elektronów swobodnych
3. Złącze p-n; struktura energetyczna, bariera potencjału i
wpływ polaryzacji elektrycznej na jej wysokość
4 Założenia oraz podstawowe równania, z których można
wyprowadzić relacje dyspersji dla fononów w krysztale.
14
Wyniki egzaminu zostaną w połowie czerwca podane na Tablicy
Ogłoszeń.
Tematy egzaminu z fizyki (warunek z 1-szego sem
Informatyka stosowana) 30.06.01
Zestaw 2-gi
Tematy egzaminu z fizyki 25.01.02( termin zerowy
Elektronika i Telekomunikacja)
Egzamin trwa 60 min. PozytywnÄ… ocenÄ™ uzyska siÄ™,
gdy zostanÄ… napisane odpowiedzi na wszystkie
pytania,
Kartkę proszę podpisać: grupa, imię i nazwisko.
1. Udowodnij, że transformacja Galileusza przeprowadza układ
inercjalny w układ inercjalny. Podaj definicję układu
inercjalnego.
2. Napisz równanie ruchu Eulera, dla bryły sztywnej, objaśnij
wielkości w nim występujące. Rozwiąż to równanie dla
swobodnie obracającej się jednorodnej kuli. Podaj założenia dla
takiego przypadku ruchu obrotowego.
15
3 ZnajÄ…c wzór Biota-Savarta :B = (µoI)/2Ä„R wylicz siÅ‚Ä™
µ Ä„
µ Ä„
µ Ä„
magnetomotoryczną Objaśnij symbole występujące we wzorze,
podaj definicję siły magnetomotorycznej oraz opisz sposób jej
wyliczania.
4 .Podaj w postaci całkowej i różniczkowej równania Maxwella.
Omów własności pół E i B oraz zjawiska jakie te prawa
opisujÄ….
Wyniki egzaminu zostaną ogłoszone 29.01.02 (wtorek) na tablicy ogłoszeń
paw. CI, piętro 3-cie
Tematy egzaminu z fizyki 04.03.02(2-gi termin
poprawkowy) Elektronika i Telekomunikacja
16
Egzamin trwa 60 min. PozytywnÄ… ocenÄ™ uzyska siÄ™,
gdy zostanÄ… napisane odpowiedzi na wszystkie
pytania,
Kartkę proszę podpisać: grupa, imię i nazwisko.
1. Podaj definicję pola zachowawczego Udowodnij, że pole
grawitacyjne Ziemi jest polem zachowawczym.
2. .Podaj przykład kiedy wektor momentu pędu nie jest równoległy
do osi obrotu bryły sztywnej. Podaj definicje osi głównych.
3. Omów doświadczenie Farada y. Podaj odpowiednie równania w
postaci różniczkowej i całkowej; objaśnij symbole. Zdefiniuj
siłę elektromotoryczną.
4 Znając wyrażenie na siłę z jaka pole magnetyczne B działa na
ładunek q poruszający się z prędkością v, wylicz siłę z jaką pole
B działa na przewodnik, w którym poruszają się ładunki q z
prędkością v, gdy gęstość objętościowa ładunków wynosi n .
(Uwaga! należy wcześniej zdefiniować wektor gęstości prądu j)
Wyniki egzaminu zostaną ogłoszone 08.03.02 (wtorek) na tablicy ogłoszeń
paw. CI, piętro 3-cie
Tarnów 18.06.02
17
Tematy egzaminu z fizyki (termin pierwszy Informatyka
Stosowana Tarnów) Sem. letni 2001/2002
Egzamin trwa 60 min. Należy odpowiedzieć na
wszystkie pytania, żeby uzyskać pozytywną ocenę.
Zestaw 2-gi
Proszę czytelnie imieniem i nazwiskiem podpisać kartkę
1.Podaj schematycznie sposób uzyskiwania oraz odtworzenia
hologramu przedmiotu przezroczystego i nieprzezroczystego.
Uzasadnij dlaczego wiązka laserowa spełnia wymagania do
tworzenia hologramów.
2. Korzystając z stacjonarnego równania Schrodingera rozwiąż
zagadnienie elektronu znajdującego się w studni potencjału o
nieskończonych brzegach. Podaj założenia, omów warunki
brzegowe i korzystająć z zasady nieoznaczoności Heisenberga
wyjaśnij dlaczego elektron nie może znajdować się w stanie
enrgetycznym równym zero. Narysuj relację dyspersji
3.Opisz zjawisko transportu elektrycznego w modelu
Fermiego elektronów swobodnych
4. Co są nadprzewodniki, podaj charakterystyczne właściwości
substancji nadprzewodzących, narysuj i objaśnij krzywe progowe.
Podaj założenia teorii BCS, w jaki sposób można wyliczyc rozmiar
typowej pary Coopera.
Wyniki egzaminu zostaną ogłoszone 24.06.02
18
Kraków 09.07.2001
Egzaminy na Informatyce Stosowanej (Tarnów)
Rok akademicki 2000/2001-07-09
A: Warunek z rok 1-szego sem zimowy (1999/2000)
B: Warunek z roku 1-szego sem. letni (1999/2000)
C: Warunek z 1-szego sem zimowy (2000/2001)
D: Sesyjny z 1-szego sem. letni (2000/2001)
19
Kraków 16.07.2001
Tematy egzaminu z fizyki (1-szy termin Automatyka i
Robotyka) Sem. letni 2000/2001
Egzamin trwa 60 min. Należy odpowiedzieć na
wszystkie pytania, żeby uzyskać pozytywną ocenę.
1. Struktura kryształu. Rodzaje wiązań w krysztale. Omów
wiązanie jonowe i kowalentne, narysuj zależność całkowitej
energii potencjalnej od wzajemnej odległości atomów.
2
2 KorzystajÄ…c z relacji dyspersji w modelu Kroniga Penneya w
2
2
postaci :
P sin(Ä…a)/(Ä…a) + cos(Ä…a) = cos(ka)
Ä… Ä… Ä…
Ä… Ä… Ä…
Ä… Ä… Ä…
i wiedząc, że prametr P jest związany z wysokością bariery potencjału
wyprowadz relacjÄ™ dyspersji dla elektronu swobodnego oraz dla
elektronu w studni potencjału o
20
Krakow 21.06.02
Tematy egzaminu z fizyki (termin pierwszy Elektronika i
Telekomunikacja Sem. letni 2001/2002
Egzamin trwa 60 min. Należy odpowiedzieć na
wszystkie pytania, żeby uzyskać pozytywną ocenę.
Zestaw 2-gi
Proszę czytelnie imieniem i nazwiskiem podpisać kartkę
1..Omów statystyki kwantowe, podaj założenia, dla statystyki
Fermiego-Diraca podaj definicjÄ™ poziomu Fermiego
2. Co to jest relacja dyspersji, jaka wielkość występująca w
równaniu Schodingera ma istotne znaczenia dla charakteru relacji
dyspersji; uzasadnij i podaj przykłady
3. Podaj założenia modelu Kroniga Penneya dla pasmowej
struktury energetycznej ciała stałego. Jakie własności funkcji
falowej należy wykorzystać, żeby dostać relacje dyspersji, omów
każdą z tych własnosci.
4. Opisz sposób tworzenia półprzewodników typu n i p. Narysuj
ich strukturÄ™ energetycznÄ… z zaznaczeniem poziomu Fermiego
(T=0K).
Wyniki egzaminu zostanÄ… podane 27 czerwca br.
21
Tematy egzaminu z fizyki (3-ci termin Automatyka i
Robotyka) Sem. letni 2000/2001
Egzamin trwa 60 min. Należy odpowiedzieć na
wszystkie pytania, żeby uzyskać pozytywną ocenę.
Proszę wpisać na kartce: grupę, czytelnie imię i nazwisko oraz
ponumerować strony.
1. Podaj założenia dla modelu Fermiego elektronów swobodnych.
Omów warunki brzegowe. Dla T=0K opisz zjawisko
przewodnictwa elektrycznego.
2.Od czego zależy masa efektywna elektronu w krysztale, dla
jakiego przypadku jest równa masie bezwładnej
3.Podaj założenia teorii BCS, w jaki sposób można wyliczyc
rozmiar typowej pary Coopera. Nadprzewodniki I i II rodzaju,
podaj kryteria i narysuj odpowiednie krzywe progowe.
4. Opisz powstawanie złącza p-n
Wyniki egzaminu zostaną podane 14 września br.
Kraków 03.06.02
22
Elektronika i Telekomunikacja termin zerowy
Zestaw I-szy
Egzamin trwa 60 min. Należy odpowiedzieć na
wszystkie pytania, żeby uzyskać pozytywną ocenę.
1. Podaj sposoby uzyskiwania rozkładu antyboltzmannowskiego.
Omów metody doświadczalne uzyskiwania takiego rozkładu
(przygotowanie akcji laserowej)
2.. Struktura kryształu. Rodzaje wiązań w krysztale. Omów
wiązanie wan der Waalsa, narysuj zależność całkowitej energii
potencjalnej od wzajemnej odległości atomów.
3. Podaj założenia dla modelu Fermiego elektronów swobodnych.
Omów warunki brzegowe, znajdz relację dyspersji, podaj
zależność graficznie. Dla T=0K oraz dla układu N elektronów
swobodnych znajdz wyrażenie: na wektor falowego k na
F
powierzchni Fermiego oraz na energiÄ™ Fermiego µF. Obliczenia
µ
µ
µ
należy prowadzić w przestrzeni wektora falowego k (kx ky kz).
Objaśnij każdy krok prowadzonych obliczeń.
4. Opisz sposób tworzenia półprzewodników typu n i p. Narysuj
ich strukturÄ™ energetycznÄ… z zaznaczeniem poziomu Fermiego
(T=0K).
Wyniki egzaminu zostanÄ… podane 12.06.02
Kraków 03.06.02
Elektronika i Telekomunikacja termin zerowy
Zestaw II-gi
23
1. Podaj schematycznie sposób uzyskiwania oraz odtworzenia
hologramu przedmiotu przezroczystego i nieprzezroczystego.
Uzasadnij dlaczego wiązka laserowa spełnia konieczne
warunki do tworzenia hologramów.
2. Fale materii, hipoteza de Broglie. Omów doświadczenie
Davissona-Germana.
. Podaj podstawowe założenia dotyczące równania Schrodingera.
Napisz równanie stacjonarne Schrodingera, objaśnij wielkości w
nim występujące oraz podaj własności jakie musi spełniać funkcja
falowa.
3. Podaj założenia modelu Kroniga Penneya dla pasmowej
struktury energetycznej ciała stałego. Jakie własności funkcji
falowej należy wykorzystać, żeby dostać relacje dyspersji, omów
każdą z tych własności.
4. Co sÄ… nadprzewodniki, podaj charakterystyczne
właściwości substancji nadprzewodzących, narysuj i objaśnij
krzywe progowe.
Wyniki egzaminu zostanÄ… podane 12.06.02
Kraków 12.06.02
24
UWAGA studenci I rok Elektroniki i Telekomunikacji
Wyniki egzaminu z fizyki ciała stałego (sem. letni
2001/2002) termin zerowy.
Następujące osoby zdały egzamin; uwzględnione zostały dolne
granice ocen.
Grupa 1-sza
1.
Grupa 2-ga
1. Duszkiewicz J. 2. Gędek P.
3. Kahl M. 4. Kasprzyk A.
Grupa 3-cia
Grupa 4-ta
1. Matusik M. 2. Meisner J.
3. Michalski M.
25
Kraków 12.06.02
UWAGA studenci I rok Elektroniki i Telekomunikacji
Egzamin z fizyki ciała stałego; termin 1-szy odbędzie się
21-go czerwca br. o godz. 12:00 w następujących salach:
Sala 121 paw. B-1
Grupa 1-sza oraz następujące osoby z grupy 4-tej
1. Bagsik R. 2. GabryÅ› J.
3. Leśniak K. 4. Aukawski K.
5.Małkuch M.
Sala 224 paw. C-1
Grupa 2-ga oraz następujące osoby z grupy 4-tej
1. Małochleb M. 2. Marciniec R.
3. Marnik M. 4. Marszalski M.
5.Masłowski P.
26
Sala 224 paw. C-2
Grupa 3-cia oraz następujące osoby z grupy 4-tej:
1. Mazanek W. 2. Mazgaj P.
3. Mędrala M. 4. Mochalski P.
5. Musiał M. 6. Poliński Sz.
Prof. Lidia J. Maksymowicz
Kraków 21.06.02
Elektronika i Telekomunikacja termin pierwszy
Kartkę należy podpisać: imię nazwisko, grupa
Proszę ponumerować strony
Egzamin trwa 60 min. Należy odpowiedzieć na
wszystkie pytania, żeby uzyskać pozytywną ocenę.
1. Podaj założenia dla modelu Fermiego elektronów swobodnych.
Omów warunki brzegowe. Dla T=0K opisz zjawisko
przewodnictwa elektrycznego.
2.Od czego zależy masa efektywna elektronu w krysztale, dla
jakiego przypadku jest równa masie bezwładnej
3.Podaj założenia teorii BCS, w jaki sposób można wyliczyć
rozmiar typowej pary Coopera. Nadprzewodniki I i II rodzaju,
podaj kryteria i narysuj odpowiednie krzywe progowe.
27
4.Uzasadnij dlaczego relacja dyspersji w modelu Kroniga Penneya
w postaci :
P sin(Ä…a)/(Ä…a) + cos(Ä…a) = cos(ka)
Ä… Ä… Ä…
Ä… Ä… Ä…
Ä… Ä… Ä…
prowadzi do pasmowej struktury energetycznej ciała stałego.
Wyniki egzaminu zostanÄ… podane 27 czerwca br
Kraków 14.06.02
UWAGA studenci I rok Informatyka Stosowana
Wyniki egzaminu z fizyki ciała stałego (sem. letni
2001/2002) termin zerowy.
Następujące osoby zdały egzamin:
1. Bryl A. 2. FrÄ…c A.
3. Kania T.P. 4. Kubis M.
5. Aaska T. 6.MichalczewskiP.
7.Pomarański M. 8. Rajski D.
9. Skowron S. 10.Stasik D.
11.Wróbel K.
28
Prof. Lidia J. Maksymowicz
Tarnów 12.06.02
UWAGA studenci I rok Informatyka Stosowana
Egzamin z fizyki (1-szy termin) odbędzie się 18-tego
czerwca (wtorek) w następujących godzinach i salach:
Godz. 10:30 sala 102
1. Adamiak W. 2. Archamowicz A.
3. Armatys K. 4. Babiarz M.
5. Bator I. 6. Biała A.
7. Biskup M. 8. Borecki A.
9. Bobrowski D. 10.Burger A.
11.Bydłosz M. 12.Chmiel A.
13.Cich P. 14.Cichy J.
15.Cichoń M.
Godz. 10:30 sala sala 104
29
1. Cudek A. 2. Cyga T.
3. Czapiga M. 4. Czesak D.
5. Damian P. 6. Danik S.
7. Drwal D. 8. Falarz P.
9. Gancarz D. 10.Gawlik K.
11.GÄ…sior P. 12.Gniadek K.
13.Gomułka A. 14.Gruszka M.
15.Grzesik K. 16.Gulik W.
17.Gurak P. 18.Haraf M.
19.Irla P. 20.Jakubek T.
Godz. 10:30 sala 126
1. Janik B. 2. Jaros J.
3. Jop R. ` 4. Jop T.
5. Jurek K. 6. Jurek K.
7. Kania T. 8. KaraÅ› B.
9. Kasprzyk M. 10.Katra D.
11.Kawa A. 12.Kawula D.
13.Kita B. 14.Klesyk A.
15. Klimczak P. 16.Kloc M.
17.Kołodziej A. 18.Kopeć R.
19.Korzec M. 20.Kowalski M.
Godz.10:30 sala 229
1. Koza D. 2. Kozioł S.
3. Kożuchowski M. 4. Krynicka I.
5. Krzyszkowska E. 6. Kubasiewicz M.
7. Kucmierz T. 8. Kułaga A.
9. Kwiecień S. 10.Leja A.
11.Ligęza T. 12.Lipińska E.
13.Litwin L. 14.Malec K.
15.Maniak T. 16.Maroń B.
30
17.Mleczko M. 18.Mucha A.
19.Niejadlik P. 20.Niemiec P.
Godz.11:45 sala102
1. Niewola A. 2. Nowak J.
3. Nytko D. 4. Pacura P.
5. Pałka K. 6. Pater W.
7. Piekarz J. 8.Piszczek P.
9. Plebanek M. 10.Podraza P.
11.Popek P. 12.Popiołek A.
13.Prorok A. 14.Prusak J.
15.Ptaszek T.
Godz. 11:45 sala 104
1. Pyrchla G. 2. Pyrek A.
3. Rabiasz K. 4. Pacia P.
5. Rąpała E. 6. Rąpała P.
7. Reczek B. 8. Reczek G.
9. Reczek T. 10.Ryba T.
11.SÅ‚ota P. 12.Smagacz P.
13.Smosma G. 14.Sobol M.
15.Sopala M. 16.Stachowicz R.
17.Stańczyk L. 18.Stańczyk M.
19.Stareńczak A. 20.Strejczek P.
21.Sysak A. 22.szblowski S.
23.Szanduła J. 24.Szczepanik P.
Godz. 11:45 sala 126
1. Szczurek J. 2. Szot K.
3. Sztorc P. 4. Szumlański S.
5. Ślęczkowski E. 6. Świątek J.
7. ÅšwiÄ…tek M. 8. Tazbirek A.
9. Tomczyk R. 10.Tryba M.
11.Tyński T. 12.Walaszek G.
31
13.Walat K. 14.WÄ…sowski A.
15.Witek P. 16.Wojciechowski A.
17.Wójcik A. 18.Wójcik R.
19.Wróblewska A. 20.Zabawski J.
21.Zachara K. 22.Zieba A.
23.Ziomek M. 24.Zugaj A.
25.Żelichowska J. 26.Żurek M.
32
Kraków 24.06.02
UWAGA studenci I rok Informatyka Stosowana
Wyniki egzaminu z fizyki ciała stałego (sem. letni
2001/2002) termin pierwszy
Następujące osoby zdały egzamin z fizyki:
1. Bobrowski D. 2. Cichy J.
3. Czesak D. 4.Daminan P.
5. Danik S. 6. Drwal D.
7. Falarz P. 8.Gruszka M.
9. Irla P. 10.Jakubek T.
11.Jop T. 12.KaraÅ› B.
13.Kozioł S. 14.Mleczko M.
15.Mucha A. 16.Niewola A.
17.Nowak J. 18.Piekarz J.
19.Popek P. 20.Prusak J.
21.Ptaszek T. 22.Reczek B.
23.Reczk T. 24.SÅ‚ota P.
25.Smagacz P. 26.Sopala M.
27.Stańczyk L. 28.Strejczek P.
29.Szablowski S. 30.Sznduła J.
31.Tazbirek A. 32.Wajda W.
33.WÄ…sowski A. 34.Zabawski J.
35.Zugaj A.
Egzamin poprawkowy odbędzie się między 14-tym a 20-tym
września br. Dokładny termin zostanie podany na początku
września.
Kraków 31.01.03
33
UWAGA studenci IA rok Elektronika i Telekomunikacja
Egzamin z fizyki (sem. zimowy 2002/2003) odbędzie się w
następujących terminach:
Sobota 08.02 br godz. 9-13
Grupa 1-sza
1. Aksamit A. 2. Augustynowicz A.
3.Bandzarewicz A. 4. Bratnicki P.
5. Batko M. 6. Bereski P.
7. Bieniasz K. 8. Bogdan A.
9. Bruzdziński J. 10.Budzioch P.
godz. 14-ta
11.Bułka P. 12.Cheba M.
13.Chlebda B. 14.Glondys P.
15.Jakóbek P. 16.Kamiński K.
Egzaminuje dr Katarzyna Zakrzewska paw.C-1 pok 317
Godz. 9-13
Grupa 1-sza
1. Belica A. 2. Biel A.
3. Boryka M. 4. Król K.
5. KuroÅ› A. 6.Majewski M.
7. Marzec M. 8. Pawlicki T.
9.Staśko A. 10.Wojna P.
Egzaminuje prof. Lidia Maksymowicz paw.C-1, pok.302
Godz.9-13
Grupa2-ga
34
1. Bieda M. 2. Byczek A.
3. Chruściński K. 4. Chwierut G.
5.Cyran D. 6. Czak P.
7. Dawiec A. 8. Dec M.
9. Dobrzyniecki K. 10.Drożdż P.
godz.14-ta
11.Ferenc M. 12.Gacek P.
13.Gielata A. 14.Gierzkiewicz B.
15.GÅ‚owacz A. 16.Godlewski Sz.
17.Groch Szymon 18. Gruszczyk P.
19.Grzelczyk A. 20.Hemperek T.
Egzaminuje dr Adam Czapla paw.C-1 pok. 311
Godz.14-ta
Grupa 2-ga
21.Kusia M. 22.Starzyk P.
23.Gronicz J. 24.Gwózdz L.
25.Szeptyński P. 26.Szot M.
Egzaminuje prof. Lidia Maksymowicz paw.C-1 pok.302
Godz.9-14
Grupa 3-cia
1. Dula P. 2. Hudzik P.
35
3. Iwaszek M. 4. Janowski T.
5. Kachel Maciej 6. Kajdański K.
7.Klimas Å‚. 8.Kmon P.
9.Knaga T. 10.Knapik K.
Godz.14-ta
11.Kogut M. 12.Kołodziejczyk M.
13.Konik A. 14.Krakowiak M.
15.Krakowin K. 16.Kramarczyk J.
Egzaminuje dr Maria Lubecka paw.C-1 pok.301
Grupa 3-cia
Godz.14-ta
1. Kluska B. 2. Kostrzewa G.
3. Kowalczyk K. 4. Krempa A.
5.Ortyl R. 6. Temper A.
7.Zalwski K.
Egzaminuje prof. Lidia Maksymowicz paw.C-1 pok.302
Godz.9-13
Grupa 4-ta
1. Borkowski R. 2. Bronicki G.
3. Domin P. 4. Franczak M.
36
5. Krypel R. 6. Krzemiński M.
7. Kulak P. 8. Kumala M.
9. Kurzyniec P. 10.Kuśnierz M.
Egzaminuje dr Edward Kusior paw. C-1 pok.311
Godz. 14-ta
11.Kut R. 12.Lasek P.
13.Lenart A. 14.Lisiecki M.
15.Lubelczyk T. 16.Madoń D.
17.Makuła M. 18.Małka M.
19.Marzec A. 20.Maziejczuk M.
21.Michałowski A. 22.Młynarczyk J.
Egzaminuje dr Edward Kusior paw. C-1 pok.311
37
Wyszukiwarka
Podobne podstrony:
Biofizyka egzamin pytania teoretycznePrawo budowlane EGZAMIN pytaniaalgorytmy pytania na egzamin pytania wyklad4egzamin pytania 3algorytmy pytania na egzamin pytania wyklad7egzamin pytaniaprawo egzamin pytaniaegzamin pytaniaONT Egzamin pytania2Fizyka egzamin pytaniaegzamin pytania i odpowiedziegzamin pytania i odpowiedzi prof Pęcherski 2Egzamin pytania i odp, gr 1Egzamin Pytania i Odpowiedzi 2więcej podobnych podstron