22. (a) and (b) In the region 0 d2È 8Ä„2m + EÈ =0 dx2 h2 where E>0. If È2(x) =B sin2 kx, then È(x) =B sin kx, where B is another constant satisfying B 2 = B. T hus d2È/dx2 = -k2B sin kx = -k2È(x) and d2È 8Ä„2m 8Ä„2m + EÈ = -k2È + EÈ . dx2 h2 h2 This is zero provided that 8Ä„2mE k2 = . h2 The quantity on the right-hand side is positive, so k is real and the proposed function satisfies Schrödinger s equation. In this case, there exists no physical restriction as to the sign of k. It can assume either positive or negative values. Thus " 2Ä„ k = Ä… 2mE . h