cerium IV ammonium nitrate eros rc038


CERIUM(IV) AMMONIUM NITRATE 1
CAN promotes benzylic oxidation of arenes,10 e.g. methyl
Cerium(IV) Ammonium Nitrate1
groups are converted into formyl groups but less efficiently when
an electron-withdrawing group is present in the aromatic ring.
(NH4)2Ce(NO3)6
A very interesting molecule, hexaoxo[16]orthocyclophane in an
internal acetal form (eq 2),11 has been generated via CAN
oxidation. Regioselective oxidation is observed with certain sub-
[16774-21-3] H8CeN8O18 (MW 548.26)
strates, e.g. 2,4-dimethylanisole gives 3-methyl-p-anisaldehyde.
InChI = 1/Ce.6NO3.2H3N/c;6*2-1(3)4;;/h;;;;;;;2*1H3/q+4;6*-
Oxidation may be diverted into formation of non-aldehyde prod-
1;;/p+2/fCe.6NO3.2H4N/h;;;;;;;2*1H/q7m;2*+1
ucts by using different media: benzylic acetates12 are formed in
InChIKey = XMPZTFVPEKAKFH-XPZOHPFVCX
glacial acetic acid, ethers13 in alcohol solvents, and nitrates14 in
acetonitrile under photolytic conditions.
(volumetric standard oxidant;2 oxidant for many functional
groups;1 can promote oxidative halogenation3)
Alternate Name: ammonium cerium(IV) nitrate; ceric ammo-
nium nitrate; CAN.
ć%
Solubility: sol water (1.41 g mL-1 at 25 C, 2.27 g mL-1 at
O
CAN
ć%
80 C); sol nitric acid.
HOAc
Form Supplied in: orange crystals; widely available. O
", 7 days
Handling, Storage, and Precautions: solid used as supplied.
No toxicity data available, but cerium is reputed to be of low
O O
toxicity.
(2)
O
O
O O
Original Commentary
hexaoxo[16]orthocyclophane
Tse-Lok Ho
National Chiao-Tung University, Hsinchu, Taiwan, Republic
of China
Polynuclear aromatic systems can be oxidized to quinones,15
but unsymmetrical substrates will often give a mixture of prod-
Functional Group Oxidation. CeIV in acidic media is a stron- ucts. It has been reported that mononitro derivatives were formed
ger oxidant than elemental chlorine and is exceeded in oxidiz- by the oxidation of polynuclear arenes with CAN adsorbed in
ing power only by a few reagents (F2, XeO3, Ag2+, O3, HN3).
silica,16 whereas dinitro compounds and quinones were obtained
The thermodynamically unstable solutions can be kept for days
from oxidation in solution.
because of kinetic stability. CAN is a one-electron oxidant soluble
in water and to a smaller extent in polar solvents such as acetic
Oxidation of Alcohols, Phenols, and Ethers. A primary
acid. Its consumption can be judged by the fading of an orange
alcohol can be retained when a secondary alcohol is oxidized
color to pale yellow, if the substrate or product is not strongly
to a ketone.17 Tetrahydrofuran formation (eq 3)18 predominates
colored. Because of its extremely limited solubility in common
in molecules with rigid frameworks, which are favorable to
organic solvents, oxidations are often carried out in mixed sol- ´-hydrogen abstraction by an alkoxyl radical.
vents such as aqueous acetonitrile. There are advantages in
using dual oxidant systems in which CeIV is present in cat-
CAN
alytic amounts. Cooxidants such as Sodium Bromate,4 tert-Butyl
(3)
Hydroperoxide,5 and Oxygen6 have been employed. Electrolytic aq MeCN, 60 °C
85%
recycling7 of CeIV species is also possible. O
OH
Cerium(IV) sulfate and a few other ligand-modified CAN
reagents have been used for the oxidation. The differences in their
Tertiary alcohols are prone to fragmentation;19 this pro-
oxidation patterns are small, and consequently it is quite safe to
cess is facilitated by a ²-trimethylsilyl group (eq 4).20 Other
replace one particular oxidizing system with another. More rarely
alcohols prone to fragmentation are cyclobutanols,21 strained
employed is cerium(IV) perchlorate.
bicyclo [x.y.z]alkan-2-ols,22 and homoallylic alcohols.18d
Oxidation of Alkenes and Arenes. The outcome of the oxi-
CAN
dation of alkenes is solvent dependent, but dinitroxylation (eq 1)8 (4)
aq MeCN, 22 °C
OH
has been achieved. Certain arylcyclopropanes are converted into
O
66%
Me3Si
the 1,3-diol dinitrates.9
CAN converts benzylic alcohols into carbonyl compounds.23
CAN ONO2
Even p-nitrobenzyl alcohol gives p-nitrobenzaldehyde in the cat-
(1)
O2NO
MeCN, h½
alytic oxidation system.23c Oxygen can be used6 as the stoichio-
91%
metric oxidant.
Avoid Skin Contact with All Reagents
2 CERIUM(IV) AMMONIUM NITRATE
Catechols, hydroquinones, and their methyl ethers readily
CAN
afford quinones on CeIV oxidation.4,24 Partial demethylative (8)
aq MeCN, 60 °C O
oxidation is feasible, as shown in the preparation of several
O
O
intramolecular quinhydrones (eq 5)25 and a precursor of daunomy-
cinone.26 Sometimes the dual oxidant system of CAN NaBrO3 is
useful. In a synthesis of methoxatin (eq 6)27 the o-quinone moiety
Concerning carboxylic acids and their derivatives, transfor-
was generated from an aryl methyl ether.
mations of practical value are restricted to oxidative hydrolysis
such as the conversion of hydrazides37 back to carboxylic acids,
transamidation of N-acyl-5,6-dihydrophenanthridines,38 and
OMe
decarboxylative processes, especially the degradation of Ä…-hydro-
O
xymalonic acids (eq 9).39 In some cases the CeIV oxidation
is much superior to periodate cleavage. A related reaction is
CAN
MeO
O
involved in a route to lactones.40
OMe
aq MeCN, 22 °C
42 97%
n
CO2H
O
O CAN
CO2H
(9)
O CO2H
MeO
aq MeCN
OH
98%
O
n = 1 4 (5)
O
OMe
Nitrogenous derivatives of carbonyl compounds such as oximes
and semicarbazones are oxidatively cleaved by CeIV,41 but only
n
O
a few synthetic applications have been reported.42
MeO
Oxidation of Nitroalkanes. CeIV oxidation provides an alter-
native to the Nef reaction.43 At least in the case of a ketomacrolide
MeO2C HO2C
synthesis (eq 10),44 complications arising from side reactions
NH CO2Me NH CO2H
CAN
caused by other reagents are avoided.
(6)
aq MeCN, 0 °C
O O
60%
N CO2Me O N CO2H
CAN, Et3N
O O
(10)
OMe O
MeCN, "
78%
NO2 O
Oxidative regeneration of the carboxylic acid from its 2,6-di-t-
butyl-4-methoxyphenyl ester28 is the basis for the use of this auxil-
iary in a stereoselective Ä…-hydroxyalkylation of carboxylic acids. Oxidation of Organosulfur Compounds. Thiols are con-
The smooth removal of p-anisyl (eq 7)29 and p-anisylmethyl30 verted into disulfides using reagents such as Bis[trinitratocerium
groups from an amidic nitrogen atom by CeIV oxidation makes (IV)] Chromate.45 Chemoselective oxidation of sulfides by CeIV
these protective groups valuable in synthesis. reagents to sulfoxides4,46 is easily accomplished. Stoichiometric
oxidation under phase transfer conditions46b and the dual oxidant4
protocols permit oxidation of a variety of sulfides.
BnOCOHN
N3
BnOCOHN The reaction of dithioacetals including 1,3-dithiolanes and
N3
CAN
1,3-dithianes with CAN provides a convenient procedure for the
N
aq MeCN, 0 °C N
O
generation of the corresponding carbonyl group.47 The rapid
(7)
H
67% O
reaction is serviceable in many systems and superior to other
OMe
methods, e.g. in the synthesis of acylsilanes.48 In a series of
compounds in which the dithiolane group is sterically hindered,
the reaction led to enones, i.e. dehydrogenation accompanied the
Simple ethers are oxidized31 to carbonyl products and the
deprotection (eq 11).49
intermediate from tetrahydrofuran oxidation can be trapped by
alcohols.32
AcO AcO
Vicinal diols undergo oxidative cleavage.33 There is no appar-
R R
ent steric limitation as both cis- and trans-cycloalkane-1,2-diols CAN
(11)
R R
are susceptible to cleavage. However, under certain conditions
aq MeCN
S S 40 45%
Ä…-hydroxy ketones may be oxidized without breaking the C C
O
bond.6
R = H, Me
Oxidation of Carbonyl Compounds. The CeIV oxidation
of aldehydes and ketones is of much less synthetic significance
than methods using other reagents. However, cage ketones often Oxidative Cleavage of Organometallic Compounds.
provide lactones (eq 8)34,35 in good yield. Tetracyclones furnish Oxidative deligation of both Ã- and Ä„-complexes by treatment
Ä…-pyrones.36 with CAN is common practice. Ligands including cyclobutadiene
A list of General Abbreviations appears on the front Endpapers
)
(
)
(
CERIUM(IV) AMMONIUM NITRATE 3
and derivatives (eq 12)50 and Ä…-methylene-Å‚-butyrolactone compound in high yield under mild conditions (eq 15).58c This
(eq 13)51 have been liberated successfully and applied to protocol has been found to be applicable to a variety of 1,3-
achieving the intended research goals. In the recovery of organic dicarbonyls and alkenes. The addition can also be carried out
products from a Dötz reaction, CAN is often employed to cleave intramolecularly leading to the formation of cyclized products
off the metallic species.52 such as ²-lactams (eq 16).59 In the absence of a suitable radical
acceptor, the radicals are susceptible to dimerization. For instance,
Nicolaou and Gray have reported the CAN-mediated dimerization
of naphthazirin in the synthesis of racemic hybocarpone (eq 17).60
Co
CAN
(12)
70%
O
CAN, MeOH
Ph
Co
5 °C, 15 min
+
98%
O
O
(15)
CAN
(13)
O
Ph
Cr(CO)5 76% O
O O
Ä…
Generation ofÄ… Radicals. As a one-electron oxidant,
Ä…-Acyl
O O
CeIV can promote the formation of radicals from carbonyl com-
CAN, MeOH
Ph
pounds. In the presence of interceptors such as butadiene and rt, 30 min
MeO N
alkenyl acetates, the Ä…-acyl radicals undergo addition.53 The car- 49%
Pr Ph
bonyl compounds may be introduced as enol silyl ethers, and the
OMe
oxidative coupling of two such ethers may be accomplished.54
MeO2C Ph
(16)
Some differences in the efficiency for oxidative cyclization of Ph
´,µ-, and µ,Å›-unsaturated enol silyl ethers using CAN and other
N
O Pr
oxidants have been noted (eq 14).55
OTBDMS O
H
CAN
OMe O 1. CAN, MeCN
(CH2)n (CH2)n (14)
 35 °C to  0 °C
NaHCO3
2. AcOH
MeCN, 25 °C H
36%
n = 1, 73% cis:trans = 20:1 MeO OH
n = 2, 42% cis:trans = 4.3:1
OMe O
OMe O O OMe
Oxidative Halogenation. Benzylic bromination56 and
(17)
Ä…-iodination of ketones3a and uracil derivatives3b can be achieved
MeO O OMe
with CAN as in situ oxidant.
OH OH
OMe O O OMe
Vinyl (or cyclopropyl) silyl ethers have also been used to
First Update
generate carbon-centered radicals by treatment with CAN.61 3,6-
Junhua Wang & Chaozhong Li Dihydroxyphthalate esters are produced by dimerization when
Shanghai Institute of Organic Chemistry, Shanghai, China bisenolsilylated 1,3-diketones are treated with CAN.61c An el-
egant example is the three-component condensation of cy-
Carbon Carbon Bond Formation. The CAN-mediated clopropyl silyl ether, cyclopentenone, and methyl vinyl ether
oxidative generation of carbon-centered radicals has been exten- (eq 18).61b Oxidation of cyclopropyl silyl ether gives the
sively investigated.57 The radicals add to a C=C double bond ²-ester radical, which undergoes tandem radical addition pro-
resulting in the formation of a new carbon carbon bond. The cesses apparently controlled by electronic effects. Subsequent
adduct radical can be further oxidized by another CAN molecule oxidation and trapping affords the 2,3-disubstituted cyclopen-
to give the carbocation, which is then trapped by a suitable nu- tanone in an excellent stereoselectivity. Other substrates include
cleophile to give the final product. Active methylene compounds tertiary aminocyclopropanes,62 N-(silylmethyl)amides,63 and
such as 1,3-dicarbonyls are among the typical substrates.58 For N,N-dialkylanilines.64 For example, CAN-mediated oxidation
example, the CAN-mediated oxidative addition of dimedone to of N,N-dialkylanilines in water affords the coupling products
1-phenylcyclohexene affords the corresponding 2,3-dihydrofuran N,N,N ,N -tetraalkylbenzidines.64
Avoid Skin Contact with All Reagents
4 CERIUM(IV) AMMONIUM NITRATE
O
azidoiodination can be accomplished for various alkenes in mod-
EtO OTMS CAN
erate to good yields.71 The reaction of CAN/NaN3 with triacetyl
MeOH
+ OMe
+
galactal provides a facile entry to aminosugars and glycopeptides
62%
(eq 22).72b This strategy has also been applied in the synthesis of
O
Ä…-amino acids.72c A one-pot synthesis of Ä…-azido cinnamates can
(18) be achieved by treatment of cinnamates with CAN/NaN3 in ace-
CHO
tonitrile followed by the elimination of nitric acid with the use of
sodium acetate as the base.73 Under similar conditions, cinnamic
CO2Et
acids can be converted to ²-azido styrenes.73
The CAN-mediated oxidation of electron-rich alkenes provides
O
another facile entry to the construction of C C bonds.65 Nair et
CAN, NaN3
N3
al. have uncovered that substituted styrenes can undergo dimeriza-
MeOH, O2, rt
(21)
tion to give 1-amino-4-aryltetralin derivatives in a one-pot proce-
85%
dure (eq 19).66 A mechanistic rationale has been proposed for the
formation of tetralin derivatives. The styrene undergoes oxidative
OAc OAc
CAN, NaN3 AcO
electron transfer to afford the radical cation, which adds to another AcO
CH3CN,  15 °C
O
styrene molecule to generate a distonic radical cation. The radical
O (22)
77% AcO
AcO
cation undergoes 1,6-addition to the phenyl ring followed by the
N3 ONO2
loss of a proton and an electron to give the corresponding carboca-
tion, which is then trapped by the solvent acetonitrile in a manner
CAN-mediated nitration provides a convenient route for the in-
analogous to the Ritter reaction to afford the final product.66 An in-
troduction of a nitro group into a variety of substrates. Alkenes
tramolecular version of this dimerization using dicinnamyl ethers
on treatment with an excess of sodium nitrite and CAN in chlo-
as the substrates produces 3,4-trans-disubstituted tetrahydrofu-
roform under sonication afford nitroalkenes.74 When acetonitrile
ran derivatives.67a Similarly, 3,4-trans-disubstituted pyrrolidines
is used as the solvent, nitroacetamidation occurs in a Ritter-type
and cyclopentanes can be achieved by CAN-mediated oxidative
cyclization of bis(cinnamyl)tosylamides and bis(cinnamyl)malo- fashion.75 However, the attempted nitroacetamidation of cyclo-
pentene-1-carboxaldehyde under similar conditions resulted in the
nates.67b The reaction is also applicable to epoxypropyl cinnamyl
formation of an unexpected dinitro-oxime compound.76 A one-
amines, and 3,4,5-trisubstituted piperidines can be achieve with
pot synthesis of 3-acetyl- or 3-benzoylisoxazole derivatives by
good stereoselectivity (eq 20).67c
reaction of alkenes (or alkynes) with CAN in acetone or ace-
tophenone has been reported.77 The proposed mechanism in-
Me
volves Ä…-nitration of the solvent acetone, oxidation to generate
CAN, MeCN
the nitrile oxide, and subsequent 1,3-dipolar cycloaddition with
argon, rt, 2 h
(19)
alkenes or alkynes. The nitration of aromatic compounds78 such
62%
cis:trans = 1.3:1 Me NHAc
as carbozole,78a naphthalene,78b and coumarins78c by CAN has
Me
also been investigated. As an example, coumarin on treatment
with 1 equiv of CAN in acetic acid gives 6-nitrocoumarin in 92%
yield.78c
Ph Ph
Ph NHAc
Several other reactions involving C N bond formation have
H
CAN, MeCN
HO
been reported. A Ritter-type reaction of alkylbenzenes with
Ph
argon, rt
O (20)
H
nitriles has been achieved.79 Thus, the treatment of ethylbenzene
62%
N with CAN in the presence of a catalytic amount of N-hydroxy-
N
phthalimide (NHPI) in EtCN produces the corresponding amide
Ts
Ts
in good selectivity (eq 23).79a The reaction is also applicable to a
number of unactivated hydrocarbons. As a comparison, the pho-
tolysis of admantane with CAN gives a mixture of products.80 In
Carbon Nitrogen Bond Formation. Apart from the
another case, the oxidation of monoterpenes such as pinene with
CAN-mediated reactions in which solvent (e.g., acetonitrile)
CAN in acetonitrile affords the corresponding bisamides in good
incorporation results in carbon-heteroatom bond formation, the
yields (eq 24).81
oxidative generation and subsequent addition of heteroatom-
centered radicals to alkenes or alkynes provide means of direct
O
CAN (1.5 equiv)
construction of carbon hetereoatom bonds.68
NHPI (0.1 equiv)
The introduction of an azide functionality with CAN/NaN3 as
HN Et
EtCN, Ar, 80 °C, 6 h
(23)
the reagents has been shown to be a useful transformation in or- Ph
51%
Ph
ganic synthesis. It also offers a convenient protocol for the bis-
functionalization of a variety of alkenes.69 73 The treatment of
AcHN
silyl enol ethers with sodium azide and CAN gives the Ä…-azido
CAN, MeCN
NHAc
ketones.69 The reactions of (substituted)styrenes with sodium
rt, 3 h
(24)
azide and CAN in methanol under oxygenated conditions also
72%
furnish Ä…-azido ketones (eq 21).70 With the aid of sodium iodide,
A list of General Abbreviations appears on the front Endpapers
CERIUM(IV) AMMONIUM NITRATE 5
Carbon Oxygen Bond Formation. CAN is an efficient The condensation of arenenitriles with arenethiols in the
reagent for the conversion of epoxides into ²-nitrato alcohols.82 presence of CAN furnishes 2-arylbenzothiazoles.95
1,2-cis-Diols can be prepared from alkenes by reaction with
CAN/I2 followed by hydrolysis with KOH.83 Of particular inter- Carbon Halogen Bond Formation. The combination of
est is the high-yield synthesis of various Ä…-hydroxy ketones and CAN with a metal bromide offers a convenient generation of
Ä…-amino ketones from oxiranes and aziridines, respectively.84 bromine radicals, which can be intercepted by a C=C bond lead-
The reactions are operated under mild conditions with the use ing to the formation of C Br bonds. As a result, a variety of
of NBS and a catalytic amount of CAN as the reagents (eq 25). alkenes can be converted to 1,2-dibromides by reaction with CAN
In another case, N-(silylmethyl)amides can be converted to and KBr.96 Similarly, acetylenes and arylcyclopropanes afford
N-(methoxymethyl)amides by CAN in methanol (eq 26).85 This the corresponding vicinal dibromoalkenes and 1,3-dibromides,
chemistry has found application in the removal of electroauxil- respectively. Cinnamyl esters or ketones on reaction with CAN,
iaries from peptide substrates. Other CAN-mediated C O bond- LiBr, and propargyl alcohol give the corresponding 2-alkoxy-
forming reactions include the oxidative rearrangement of aryl 1-bromoesters or ketones (eq 28).97 The reaction, however, is
cyclobutanes and oxetanes,86 the conversion of allylic and ter- only effective when there is an electron-donating group such as a
tiary benzylic alcohols into their corresponding ethers,87 and the methoxy group in the aromatic ring.
alkoxylation of cephem sulfoxides at the position Ä… to the ester
OH
moiety.88
CO2Me
O
LiBr, CAN
NBS (1 equiv)
(28)
CO2Me
CAN (0.2 equiv)
87%
CHO Ar
Ar
MeCN-H2O, rt
(25)
Br
Ar = p-MeOC6H4
84%
NTs NHTs
O Bn
CAN in combination with iodine or an iodide has been demon-
CAN
MeOH-CH2Cl2
strated to be a powerful iodination reagent. Stereoselective iodo-
N CO2Me
87%
acetoxylation of glycals using sodium iodide and CAN in a
BocHN
X
mixture of MeCN and acetic acid has been achieved.98 In a simi-
X = (2-methoxyphenyl)Me2Si
lar fashion, the reaction of Ä…,²-unsaturated ketones or esters with
iodine and CAN in alcohol affords the corresponding ²-alkoxy-
O Bn
Ä…-iodoketones or esters in good yields.99 The regioselective
N CO2Me (26)
iodination of pyrazoles100 and an alkoxybenzene101 mediated by
BocHN
CAN has been reported.
OMe
Miscellaneous Reactions. A silyl-containing alcohol derived
from cyclohexene oxide can be converted to a nine-membered
Carbon Sulfur Bond Formation. The oxidation of sulfi-
lactone on treatment with CAN, presumably via the oxidative
nates by CAN provides an easy entry to sulfonyl radicals, which
generation and subsequent transformations of an alkoxy radical
can be trapped by various alkenes, especially electron-rich ones,
(eq 29).102
to afford sulfones. For example, the reaction of sodium 2-naphtha-
lenesulfinate with 1-vinylcyclobutanol in the presence of CAN
HO
furnishes the ring-enlarged product (eq 27).89 With the aid of
O
O
CAN
H
sodium iodide, the CAN-mediated oxidative addition of sulfinates
85 °C
to styrene affords vinyl sulfones and the addition to alkynes leads O
(29)
85%
H
to ²-iodo vinyl sulfones.90
SiMe3
CAN
SO2Na
HO
MeCN
A mild protocol for the conversion of ²-ketoesters and
+
72%
²-diketones to carboxylic acids with the use of CAN in acetonitrile
is reported (eq 30).103
O
(27)
O O
SO2Nap CAN, MeCN
N2, rt, 4 h
2
83%
The treatment of styrenes with ammonium thiocyanate91 and
CO2H
CAN in MeCN results in the formation of dithiocyanates.91a
(30)
2
Under an oxygen atmosphere, phenacyl thiocyanates can be the
major products.91c The thiocyanation of indoles also proceeds
under similar conditions.91b Chemoselective thioacetalization of
aldehydes92 and the conversion of epoxides to their corresponding CAN-mediated dehydrogenation leads to a variety of
thiiranes93 can be operated under mild conditions with the catal- aromatic compounds such as quinoline,104 pyridazine,105
108
ysis of CAN. As an extension, selenocyanation can be conducted thiadiazole,106 pyrido[4,3,2-kl]acridin-4-one,107 azobenzene,
in a similar fashion with CAN/KSeCN.94 and tetrazole109 derivatives.
Avoid Skin Contact with All Reagents
6 CERIUM(IV) AMMONIUM NITRATE
CAN is often used to detach a metal ion from its complex. CAN- 26. Hauser, F. M.; Prasanna, S., J. Am. Chem. Soc. 1981, 103, 6378.
mediated decomplexation of the complexes of Co,110 Mn,111
27. Corey, E. J.; Tramontano, A., J. Am. Chem. Soc. 1981, 103, 5599.
Fe,112 Os,113 Ru,114 and Mo115 has also been reported.
28. Heathcock, C. H.; Pirrung, M. C.; Montgomery, S. H.; Lampe, J.,
Tetrahedron 1981, 37, 4087.
Related Reagents. Cerium(IV) Ammonium Nitrate Sodium 29. (a) Fukuyama, T.; Frank, R. K.; Jewell, C. F., J. Am. Chem. Soc. 1980,
102, 2122. (b) Kronenthal, D. R.; Han, C. Y.; Taylor, M. K., J. Org.
Bromate; Iodine Cerium(IV) Ammonium Nitrate.
Chem. 1982, 47, 2765.
30. Yamaura, M.; Suzuki, T.; Hashimoto, H.; Yoshimura, J.; Okamoto, T.;
Shin, C., Bull. Chem. Soc. Jpn. 1985, 58, 1413.
1. (a) Richardson, W. H. In Oxidation in Organic Chemistry, Wiberg, K.
31. Olah, G. A.; Gupta, B. G. B.; Fung, A. P., Synthesis 1980, 897.
B., Ed.; Academic: New York, 1965; Part A, Chapter IV. (b) Ho, T.-L.,
32. Maione, A. M.; Romeo, A., Synthesis 1987, 250.
Synthesis 1973, 347. (c) Ho, T.-L. In Organic Syntheses by Oxidation
33. (a) Hintz, H. L.; Johnson, D. C., J. Org. Chem. 1967, 32, 556.
with Metal Compounds, Mijs, W. J.; de Jonge, C. R. H. I., Eds., Plenum:
(b) Trahanovsky, W. S.; Young, L. H.; Bierman, M. H., J. Org. Chem.
New York, 1986, Chapter 11.
1969, 34, 869.
2. Smith, G. F. Cerate Oxidimetry, G. Frederick Smith Chemical Co.:
Columbus, OH, 1942. 34. Soucy, P.; Ho, T.-L.; Deslongchamps, P., Can. J. Chem. 1972, 50, 2047.
3. (a) Horiuchi, C. A.; Kiji, S., Chem. Lett. 1988, 31. (b) Asakura, J.; 35. Mehta, G.; Pandey, P. N.; Ho, T.-L., J. Org. Chem. 1976, 41, 953.
Robins, M. J., J. Org. Chem. 1990, 55, 4928.
36. Ho, T.-L.; Hall, T.-W.; Wong, C. M., Synth. Commun. 1973, 3, 79.
4. Ho, T.-L., Synth. Commun. 1979, 9, 237.
37. Ho, T.-L.; Ho, H. C.; Wong, C. M., Synthesis 1972, 562.
5. Kanemoto, S.; Saimoto, H.; Oshima, K.; Nozaki, H., Tetrahedron Lett.
38. (a) Uchimaru, T.; Narasaka, K.; Mukaiyama, T., Chem. Lett. 1981, 1551.
1984, 25, 3317.
(b) Narasaka, K.; Hirose, T.; Uchimaru, T.; Mukaiyama, T., Chem. Lett.
6. Hatanaka, Y.; Imamoto, T.; Yokoyama, M., Tetrahedron Lett. 1983, 24,
1982, 991.
2399.
39. Salomon, M. F.; Pardo, S. N.; Salomon, R. G., J. Am. Chem. Soc. 1980,
7. Kreh, R. P.; Spotnitz, R. M.; Lundquist, J. T., J. Org. Chem. 1989, 54,
102, 2473.
1526.
40. Salomon, R. G.; Roy, S.; Salomon, M. F., Tetrahedron Lett. 1988, 29,
8. Baciocchi, E.; Giacco, T. D.; Murgia, S. M.; Sebastiani, G. V.,
769.
Tetrahedron 1988, 44, 6651.
41. Bird, J. W.; Diaper, D. G. M., Synlett 1969, 47, 145.
9. Young, L. B., Tetrahedron Lett. 1968, 5105.
42. (a) Oppolzer, W.; Petrzilka, M.; Bättig, K., Helv. Chim. Acta 1977, 60,
10. (a) Syper, L., Tetrahedron Lett. 1966, 4493. (b) Laing, S. B., J. Chem.
2964. (b) Oppolzer, W.; Bättig, K.; Hudlicky, T., Tetrahedron 1981, 37,
Soc. (C) 1968, 2915.
4359.
11. Lee, W. Y.; Park, C. H.; Kim, S., J. Am. Chem. Soc. 1993, 115, 1184.
43. Olah, G. A.; Gupta, B. G. B., Synthesis 1980, 44.
12. Baciocchi, E.; Della Cort, A.; Eberson, L.; Mandolini, L.; Rol, C.,
44. Cookson, R. C.; Ray, P. S., Tetrahedron Lett. 1982, 23, 3521.
J. Org. Chem. 1986, 51, 4544.
45. (a) Firouzabadi, H.; Iranpoor, N.; Parham, H.; Sardarian, A.; Toofan,
13. Della Cort, A.; Barbera, A. L.; Mandolini, L., J. Chem. Res. (S) 1983,
J., Synth. Commun. 1984, 14, 717. (b) Firouzabadi, H.; Iranpoor, N.;
44.
Parham, H.; Toofan, J., Synth. Commun. 1984, 14, 631.
14. Baciocchi, E.; Rol, C.; Sebastiani, G. V.; Serena, B., Tetrahedron Lett.
46. (a) Ho, T.-L.; Wong, C. M., Synthesis 1972, 561. (b) Baciocchi, E.;
1984, 25, 1945.
Piermattei, A.; Ruzziconi, R., Synth. Commun. 1988, 18, 2167.
15. (a) Ho, T.-L.; Hall, T.-W.; Wong, C. M., Synthesis 1973, 206.
47. Ho, T.-L.; Ho, H. C.; Wong, C. M., J. Chem. Soc., Chem. Commun.
(b) Periasamy, M.; Bhatt, M. V., Tetrahedron Lett. 1977, 2357.
1972, 791.
16. Chawla, H. M.; Mittal, R. S., Synthesis 1985, 70.
48. Tsai, Y.-M.; Nieh, H.-C.; Cherng, C.-D., J. Org. Chem. 1992, 57, 7010.
17. Kanemoto, S.; Tomioka, H.; Oshima, K.; Nozaki, H., Bull. Chem. Soc.
49. Lansbury, P. T.; Zhi, B., Tetrahedron Lett. 1988, 29, 179.
Jpn. 1986, 58, 105.
50. (a) Watts, L.; Fitzpatrick, J. D.; Pettit, R., J. Am. Chem. Soc. 1965, 87,
18. (a) Trahanovsky, W. S.; Young, M. G.; Nave, P. M., Tetrahedron Lett.
3253. (b) Gleiter, R.; Karcher, M., Angew. Chem., Int. Ed. Engl. 1988,
1969, 2501. (b) Doyle, M. P.; Zuidema, L. J.; Bade, T. R., J. Org.
27, 840.
Chem. 1975, 40, 1454. (c) Fujise, Y.; Kobayashi, E.; Tsuchida, H.; Ito,
51. Casey, C. P.; Brunsvold, W. R., J. Organomet. Chem. 1975, 102, 175.
S., Heterocycles 1978, 11, 351. (d) Balasubramanian, V.; Robinson, C.
H., Tetrahedron Lett. 1981, 501. 52. Wulff, W. D.; Tang, P. C.; McCallum, J. S., J. Am. Chem. Soc. 1981,
103, 7677.
19. Trahanovsky, W. S.; Macaulay, D. B., J. Org. Chem. 1973, 38, 1497.
53. (a) Baciocchi, E.; Ruzziconi, R., J. Org. Chem. 1986, 51, 1645.
20. Wilson, S. R.; Zucker, P. A.; Kim, C.; Villa, C. A., Tetrahedron Lett.
(b) Baciocchi, E.; Civitarese, G.; Ruzziconi, R., Tetrahedron Lett. 1987,
1985, 26, 1969.
28, 5357. (c) Baciocchi, E.; Ruzziconi, R., Synth. Commun. 1988, 28,
21. (a) Meyer, K.; Rocek, J., J. Am. Chem. Soc. 1972, 94, 1209. (b) Hunter,
1841.
N. R.; MacAlpine, G. A.; Liu, H.-J.; Valenta, Z., Can. J. Chem. 1970,
54. Baciocchi, E.; Casu, A.; Ruzziconi, R., Tetrahedron Lett. 1989, 30,
48, 1436.
3707.
22. Trahanovsky, W. S.; Flash, P. J.; Smith, L. M., J. Am. Chem. Soc. 1969,
55. Snider, B. B.; Kwon, T., J. Org. Chem. 1990, 55, 4786.
91, 5068.
56. Maknon kov, D. I.; Cheprakov, A. V.; Rodkin, M. A.; Mil chenko,
23. (a) Trahanovsky, W. S.; Cramer, J., J. Org. Chem. 1971, 36, 1890.
A. Y.; Beletskaya, I. P., Zh. Org. Chem. 1986, 22, 30.
(b) Trahanovsky, W. S.; Fox, N. S., J. Am. Chem. Soc. 1974, 96, 7968.
(c) Ho, T.-L., Synthesis 1978, 936.
57. Nair, V.; Balagopal, L.; Rajan, R.; Mathew, J., Acc. Chem. Res. 2004,
24. (a) Ho, T.-L.; Hall, T.-W.; Wong, C. M., Chem. Ind. (London) 1972, 37, 21.
729. (b) Jacob, P., III; Callery, P. S.; Shulgin, A. T.; Castagnoli, N., Jr.,
58. (a) Nair, V.; Mathew, J., J. Chem. Soc., Perkin Trans. 1 1995, 187.
J. Org. Chem. 1976, 41, 3627. (c) Syper, L.; Kloc, K.; Mlochowski, J.,
(b) Nair, V.; Mathew, J.; Alexander, S., Synth. Commun. 1995, 25,
Synthesis 1979, 521.
3981. (c) Nair, V.; Mathew, J.; Radhakrishnan, K. V., J. Chem. Soc.,
25. Bauer, H.; Briaire, J.; Staab, H. A., Angew. Chem., Int. Ed. Engl. 1983, Perkin Trans. 1 1996, 1487. (d) Kobayashi, K.; Mori, M.; Uneda, T.;
22, 334. Morikawa, O.; Konishi, H., Chem. Lett. 1996, 451. (e) Cravotto, G.;
A list of General Abbreviations appears on the front Endpapers
CERIUM(IV) AMMONIUM NITRATE 7
Nano, G. M.; Palmisano, G.; Tagliapietra, S., Synthesis 2003, 1286. 83. Horiuchi, C. A.; Dan, G.; Sakamoto, M.; Suda, K.; Usui, S.; Sakamoto,
(f) Kobayashi, K.; Nagase, K.; Morikawa, O.; Konishi, H., Heterocycles O.; Kitoh, S.; Watanabe, S.; Utsukihara, T.; Nozaki, S., Synthesis 2005,
2003, 60, 939. (g) Waizumi, N.; Stankovic, A. R.; Rawal, V. H., J. 2861.
Am. Chem. Soc. 2003, 125, 13022. (h) Kobayashi, K.; Umakoshi, H.;
84. Surendra, K.; Krishnaveni, N. S.; Rao, K. R., Tetrahedron Lett. 2005,
Hayashi, K.; Morikawa, O.; Konishi, H., Chem. Lett. 2004, 33, 1588.
46, 4111.
(i) Sommermann, T.; Kim, B. G.; Peters, K.; Peters, E.-M.; Linker, T.,
85. Sun, H.; Moeller, K. D., Org. Lett. 2003, 5, 3189.
Chem. Commun. 2004, 2624. (j) Chuang, C.-P.; Wu, Y.-L., Tetrahedron
86. Nair, V.; Rajan, R.; Mohanan, K.; Sheeba, V., Tetrahedron Lett. 2003,
2004, 60, 1841.
44, 4585.
59. D Annibale, A.; Pesce, A.; Resta, S.; Trogolo, C., Tetrahedron Lett.
87. Iranpoor, N.; Mothaghineghad, E., Tetrahedron 1994, 50, 1859.
1997, 38, 1829.
88. Alpegiani, M.; Bissolino, P.; Borghi, D.; Perrone, E., Synlett 1994, 233.
60. Nicolaou, K. C.; Gray, D., Angew. Chem., Int. Ed. 2001, 40, 761.
89. (a) Narasaka, K.; Mochizuki, T.; Hayakawa, S., Chem. Lett. 1994, 1705.
61. (a) Paolobelli, A. B.; Ceccherelli, P.; Pizzo, F.; Ruzziconi, R., J. Org.
(b) Mochizuki, T.; Hayakawa, S.; Narasaka, K., Bull. Chem. Soc. Jpn.
Chem. 1995, 60, 4954. (b) Paolobelli, A. B.; Ruzziconi, R., J. Org.
1996, 69, 2317.
Chem. 1996, 61, 6434. (c) Langer, P.; Kohler, V., Chem. Commun.
90. Nair, V.; Augustine, A.; George, T. G.; Nair, L. G., Tetrahedron Lett.
2000, 1653.
2001, 42, 6763.
62. Takemoto, Y.; Yamagata, S.; Furuse, S.; Hayase, H.; Echigo, T.; Iwata,
91. (a) Nair, V.; Nair, L. G., Tetrahedron Lett. 1998, 39, 4585. (b) Nair, V.;
C., Chem. Commun. 1998, 651.
George, T. G.; Nair, L. G.; Panicker, S. B., Tetrahedron Lett. 1999, 40,
63. Kim, H. J.; Yoon, U. C.; Jung, Y.-S.; Park, N. S.; Cederstrom, E. M.;
1195. (c) Nair, V.; Nair, L. G.; George, T. G.; Augustine, A., Tetrahedron
Mariano, P. S., J. Org. Chem. 1998, 63, 860.
2000, 56, 7607.
64. Xi, C.; Jiang, Y.; Yang, X., Tetrahedron Lett. 2005, 46, 3909. 92. Mandal, P. K.; Roy, S. C., Tetrahedron 1995, 51, 7823.
93. Iranpoor, N.; Kazemi, F., Synthesis 1996, 821.
65. Nair, V.; Sheeba, V.; Panicker, S. B.; George, T. G.; Rajan, R.;
Balagopal, L.; Vairamani, M.; Prabhakar, S., Tetrahedron 2000, 56,
94. Nair, V.; Augustine, A.; George, T. G., Eur. J. Org. Chem. 2002, 2363.
2461.
95. Tale, R. H., Org. Lett. 2002, 4, 1641.
66. Nair, V.; Rajan, R.; Rath, N. P., Org. Lett. 2002, 4, 1575.
96. Nair, V.; Panicker, S. B.; Augustine, A.; George, T. G.; Thomas, S.;
Vairamani, M., Tetrahedron 2001, 57, 7417.
67. (a) Nair, V.; Balagopal, L.; Sheeba, V.; Panicker, S. B.; Rath, N. P.,
Chem. Commun. 2001, 1682. (b) Nair, V.; Mohanan, K.; Suja, T. D.; 97. Roy, S. C.; Guin, C.; Rana, K. K.; Maiti, G., Synlett 2001, 226.
Suresh, E., Tetrahedron Lett. 2006, 47, 2803. (c) Nair, V.; Mohanan,
98. Roush, W. R.; Narayan, S.; Bennett, C. E.; Briner, K., Org. Lett. 1999,
K.; Suja, T. D.; Suresh, E., Tetrahedron Lett. 2006, 47, 705.
1, 895.
68. Nair, V.; Panicker, S. B.; Nair, L. G.; George, T. G.; Augustine, A.,
99. Horiuchi, C. A.; Ochiai, K.; Fukunishi, H., Chem. Lett. 1994, 185.
Synlett 2003, 156.
100. (a) Rodriguez-Franko, M. I.; Dorronsoro, I.; Hernandez-Higueras,
69. (a) Magnus, P.; Barth, L., Tetrahedron 1995, 51, 11075. (b) Battaglia, A. I.; Antequera, G., Tetrahedron Lett. 2001, 42, 863. (b) Sammelson,
A.; Baldelli, E.; Bombardelli, E.; Carenzi, G.; Fontana, G.; Gelmi, M. R. E.; Casida, J. E., J. Org. Chem. 2003, 68, 8075.
L.; Guerrini, A.; Pocar, D., Tetrahedron 2005, 61, 7727.
101. Nishiyama, T.; Isobe, M.; Ichikawa, Y., Angew. Chem., Int. Ed. 2005,
70. Nair, V.; Nair, L. G.; George, T. G.; Augustine, A., Tetrahedron 2000, 44, 4372.
56, 7607.
102. Hatcher, M. A.; Borstnik, K.; Posner, G. H., Tetrahedron Lett. 2003,
44, 5407.
71. Nair, V.; George, T. G.; Sheeba, V.; Augustine, A.; Balagopal, L.; Nair,
L. G., Synlett 2000, 1597. 103. Zhang, Y.; Jiao, J.; Flowers, R. A., II, J. Org. Chem. 2006, 71, 4516.
72. (a) Matos, M. N.; Afonso, C. A. M.; Batey, R. A., Tetrahedron 2005, 104. (a) Jimenez, O.; de la Rosa, G.; Lavilla, R., Angew. Chem. Int. Ed. 2005,
61, 1221. (b) Renaudet, O.; Dumy, P., Tetrahedron Lett. 2004, 45, 65. 44, 6521. (b) Wolf, C.; Lerebours, R., J. Org. Chem. 2003, 68, 7077.
(c) Clive, D. L. J.; Etkin, N., Tetrahedron Lett. 1994, 35, 2459.
105. Po~gan, F.; Polanc, S.; Ko%0Å„evar, M., Synthesis 2003, 2349.
73. Nair, V.; George, T. G., Tetrahedron Lett. 2000, 41, 3199. 106. Somogyi, L., Heterocycles 2004, 63, 2243.
74. (a) Hwu, J. R.; Chen, K. L.; Ananthan, S., J. Chem. Soc., Chem. 107. Bouffier, L.; Demeunynck, M.; Milet, A.; Dumy, P., J. Org. Chem. 2004,
Commun. 1994, 1425. (b) Hwu, J. R.; Chen, K. L.; Ananthan, S.; Patel, 69, 8144.
H. V., Organometallics 1996, 15, 499.
108. Carreno, M. C.; Mudarra, G. F.; Merino, E.; Ribagorda, M., J. Org.
Chem. 2004, 69, 3413.
75. Reddy, M. V. R.; Mehrotra, B.; Vankar, Y. D., Tetrahedron Lett. 1995,
36, 4861. 109. De Lombaert, S.; Blanchard, L.; Stamford, L. B.; Tan, J.; Wallace,
E. M.; Satoh, Y.; Fitt, J.; Hoyer, D.; Simonsbergen, D.; Moliterni, J.;
76. Smith, C. C.; Jacyno, J. M.; Zeiter, K. K.; Parkanzky, P. D.; Paxson,
Marcopoulos, N.; Savage, P.; Chou, M.; Trapani, A. J.; Jeng, A. Y.,
C. E.; Pekelnicky, P.; Harwood, J. S.; Hunter, A. D.; Lucarelli, V. G.;
J. Med. Chem. 2000, 43, 488.
Lufaso, M. W.; Cutler, H. G., Tetrahedron Lett. 1998, 39, 6617.
110. (a) Tanino, K.; Shimizu, T.; Miyama, M.; Kuwajima, I., J. Am. Chem.
77. Itoh, K.; Takahashi, S.; Ueki, T.; Sugiyama, T.; Takahashi, T. T.;
Soc. 2000, 122, 6116. (b) Crisostomo, F. R. P.; Carrillo, R.; Martin, T.;
Horiuchi, C. A., Tetrahedron Lett. 2002, 43, 7035.
Martin, V. S., Tetrahedron Lett. 2005, 46, 2829.
78. (a) Chakrabarty, M.; Batabyal, A., Synth. Commun. 1994, 24, 1.
111. Lepore, S. D.; Khoran, A.; Bromfield, D. C.; Cohn, P.; Jairaj, V.;
(b) Mellor, J. M.; Parkes, R.; Millar, R. W., Tetrahedron Lett. 1997,
Silvestri, M. A., J. Org. Chem. 2005, 70, 7443.
38, 8739. (c) Ganguly, N.; Sukai, A. K.; De, S., Synth. Commun. 2001,
112. (a) Lukesh, J. M.; Donaldson, W. A., Chem. Commun. 2005, 110.
31, 301. (d) Asghedom, H.; LaLonde, R. T.; Ramdayal, F., Tetrahedron
(b) Limanto, J.; Khuong, K. S.; Houk, K. N.; Snapper, M. L., J. Am.
Lett. 2002, 43, 3989.
Chem. Soc. 2003, 125, 16310. (c) Yun, Y. K.; Godula, K.; Cao, Y.;
79. (a) Sakaguchi, S.; Hirabayashi, T.; Ishii, Y., Chem. Commun. 2002,
Donaldson, W. A., J. Org. Chem. 2003, 68, 901.
516. (b) Nair, V.; Suja, T. D.; Mohanan, K., Tetrahedron Lett. 2005, 46,
113. Stokes, S. M., Jr; Ding, F.; Smith, P. L.; Keane, J. M.; Kopach, M. E.;
3217.
Jervis, R.; Sabat, M.; Harman, W. D., Organometallics 2003, 22, 4170.
80. Mella, M.; Freccero, M.; Soldi, T.; Fasani, E.; Albini, A., J. Org. Chem.
114. Pigge, F. C.; Coniglio, J. J.; Rath, N. P., J. Org. Chem. 2004, 69, 1161.
1996, 61, 1413.
115. Kocienski, P. J.; Christopher, J. A.; Bell, R.; Otto, B., Synthesis 2005,
81. Nair, V.; Rajan, R.; Balagopal, L.; Thomas, S.; Narasimlu, K. A.,
75.
Tetrahedron Lett. 2002, 43, 8971.
82. Iranpoor, N.; Salehi, P., Tetrahedron 1995, 51, 909.
Avoid Skin Contact with All Reagents


Wyszukiwarka

Podobne podstrony:
cerium IV ammonium sulfate eros rc040
mercury II nitrate eros rm037
silver I nitrate eros rs022
tin IV chloride zinc chloride eros eros rt115
thallium III nitrate trihydrate eros rt085
tin IV chloride eros rt113
ammonia eros ra094
Bandit IV AB [DM] MV32 89 1
phenylcopper eros rp058
IV CSK 109 09 1
Budownictwo Ogólne semestr IV 1 Stropodachy(1)
Wyk ad IV Minimalizacja funkcji logicznych
peracetic?id eros rp034

więcej podobnych podstron