TRIMETHYL PHOSPHITE 1
Carbonyl Adducts. Trimethyl phosphite reacts readily with
Trimethyl Phosphite1
1,4- and 1,2-benzoquinones to give methyl esters of hydroquinone
monophosphates (eq 4)6 and cyclic oxyphosphoranes (eq 5),6
(MeO)3P
respectively. Ramirez and co-workers reported that trimethyl
phosphite promotes the dimerization of methyl pyruvate to give,
after basic hydrolysis, a mixture of diastereomeric tartrates (eq 6).7
[121-45-9] C3H9O3P (MW 124.09)
InChI = 1/C3H9O3P/c1-4-7(5-2)6-3/h1-3H3
O
InChIKey = CYTQBVOFDCPGCX-UHFFFAOYAO
O
P(OMe)2
O
(reducing agent for various functional groups; can function as a
(MeO)3P, "
(4)
potent thiophile for sulfur extrusion; forms a stable complex with
100%
copper(I) iodide and methylcopper)
O
ć%
Physical Data: bp 111 112 C/760 mmHg; d 1.052 g cm-3.
OMe
Solubility: sol most organic solvents.
Form Supplied in: clear, free flowing liquid; commercially avail-
OMe
MeO OMe
O O
able in >99% purity.
P
O O
(MeO)3P, "
Purification: treatment with sodium (to remove water and dialkyl
(5)
100%
phosphonate), followed by decanting and distillation.2
Handling, Storage, and Precautions: store in a dry place, prefer-
ably in a fume hood due to its pungent odor; purified material
should be stored over activated molecular sieves; cancer suspect
agent, corrosive and irritating to tissues of respiratory tract.
O
(MeO)3P, "
2 MeO
O
Original Commentary
OMe OMe
MeO OMe MeO OMe
NaOH
P P
Anthony D. Piscopio
+
O O O O
Pfizer, Groton, CT, USA
90%
MeO2C CO2Me MeO2C CO2Me
Use in the Arbuzov and Perkow Reactions. Although
used less frequently than Triethyl Phosphite, trimethyl phosphite
has seen significant application in the synthesis of organophos-
HO OH HO OH
phonates (eq 1)3 and phosphates (eq 2)4 via Arbuzov and Perkow
+ (6)
reactions, respectively. For example, an interesting Ä…-diazophos-
MeO2C CO2Me MeO2C CO2Me
phonate reagent developed by Seyferth has been applied to the one-
step conversion of aldehydes to terminal alkynes (eq 3).5 Since the
potentially hazardous diazophosphonate is purified by distillation,
use of the relatively volatile dimethyl derivative is warranted.
Deoxygenation. The reductive decomposition of ozonides
can be conveniently accomplished using trimethyl phosphite
(MeO)3P, " O
(eq 7).8 The innocuous byproduct, trimethyl phosphate, is
(1)
R X
R P(OMe)2
easily removed from the crude reaction mixture either by extrac-
X = Cl, Br, I
tion or evaporation.
O
O
P(OMe)2 CO2Me
O3, CH2Cl2 MeOH
O O
R3 (MeO)3P, " O
(2) (MeO)3P, 78 °C
R1
R3
X
R1
R2
95%
R2
X = Cl, Br
MeO2C
O O
CO2Me
1. N2H4
O O
Br
(MeO)3P, " 2. NaNO2, HCl
(7)
N N
P(OMe)2
CHO
O O O
MeO2C
t-BuOK, THF
N2 P(OMe)2 R H (3)
The reagent has been equally efficacious in the conversion of
RCHO
O
nitrile oxides to nitriles (eq 8).9 Additionally, Seebach and co-
78 °C to rt
excellent workers have reported the synthesis of a cyclic µ-tetrazine via
yields
reduction of the corresponding N-oxide (eq 9).10
Avoid Skin Contact with All Reagents
2 TRIMETHYL PHOSPHITE
+ (MeO)3P
(8)
C N O C N
(MeO)3P
"
93%
O
51%
SPh
H
S
O
Ph
Me Me
N N
(MeO)3P
(9)
N N
+
(14)
100% OH
N N N N
Me O Me
O R
O O
H H H
H
O
S
R R
(MeO)3P, R OH
Desulfurization. Trimethyl phosphite (in addition to triethyl
(15)
N
phosphite) has been applied successfully to the Corey Winter N
65 86%
O O
H
alkene synthesis.11 The key step of the sequence involves
MeO2C
CO2Me
phosphite-mediated decomposition of a thiocarbonate derivative
which proceeds stereospecifically and often results in good yields
of desired alkene (eqs 10 11).12 Alkynes have also been synthe-
Dehalogenation. Dershowitz18 has reported that vicinal
sized using this method, albeit in lower overall yields (eq 12).13 dibromides are smoothly converted to alkenes by heating in the
presence of trimethyl phosphite. The reagent was successfully
applied to systems where other reagents, such as Sodium Iodide
R1
R1 OH
O R1
(MeO)3P, "
or Zinc dust proved unsatisfactory (eq 16). The dehydrohalogena-
(10)
S
good yields
tion of a steroidal allylic bromide has also been reported (eq 17).19
R2 OH R2 O
R2
Br O
O
(MeO)3P, "
(16)
OH
92% OH
R1
R1
R1 OH (MeO)3P, "
O
Br
(11)
S
good yields
R2
R2 OH R2 O
R
(MeO)3P, "
H
S
56%
1. MeLi, THF
TMSO OTMS
H
2. CS2, MeI (MeO)3P, "
O O
BzO Br
25 35%
R R
R
R R
R R (12)
(17)
H
BzO
Treatment of 1,3-dithiacyclohexane-2-thione14 with trimethyl
phosphite affords the corresponding ylide quantitatively. The
phosphorane has been applied the one-carbon homologation of
Copper Complexes. Copper(I) Iodide Trimethyl Phosphite
aldehydes to carboxylic acids (eq 13).15
is formed in 84% yield by the reaction of trimethyl phosphite
and Copper(I) Iodide in refluxing benzene.20 The salt has been
used as a catalyst in the decomposition of diethyl diazomalonate
OMe
to give ethers (eq 18)21 and cyclopropanes (eq 19).20 Furanones
S
MeO OMe
P
(MeO)3P, "
RCHO have been prepared using related methodology (eq 20).22
S S
100%
S S
O O
O O
(MeO)3P, CuI, EtOH
(18)
EtO OEt
82% EtO OEt
N2
OEt
R
OH
H2O
CO2Me
R
(13)
1,3-cyclooctadiene
O O
S S CO2Me
(MeO)3P·CuI
O
(19)
MeO OMe
100%
N2
In addition, trimethyl phosphite has been used to capture O
O
intermediates formed during [2,3]-sigmatropic rearrangement of
N2 (MeO)3P·CuI
(20)
41%
allylic sulfoxides (eq 14)16 and in the conversion of penicillin
O
CO2Et
O
derivatives to azetidinones (eq 15).17
A list of General Abbreviations appears on the front Endpapers
TRIMETHYL PHOSPHITE 3
F F
Trimethyl phosphite methylcopper is a relatively stable com-
plex of Methylcopper. The reagent adds readily, in a conjugate
sense, to cyclohexenones, with a strong preference for axial at-
tack (eq 21).23
P(OMe)3
OMe
O (24)
O
Cl P
N
N
OMe
MeCu[P(OMe)3]3
(21)
O
91%
trans:cis = 49:1
Cyclic allylic phosphates are shown to react with trimethyl
phosphite at the Å‚-position to give phosphonates resulting in
allylic inversion.37
Esterification. Trimethyl phosphite has been used in the con-
version of a sensitive indolecarboxylic acid to the corresponding
Hydroxyiminophosphonates. Trimethyl phosphite has also
methyl ester under neutral conditions (eq 22).24
been used to generate the hydroxyiminophosphonates by reaction
with bromonitroalkanes other than bromonitromethane by Kim
38
et al. The crude product after chromatography gave modest
(MeO)3P, "
CO2H
CO2Me
yields of E and Z mixtures of the oximes (eq 25). These oximes
(22)
N 94%
N
could be useful intermediates for the synthesis of aminophos-
Me
Me
phonic acids via reduction. Currently the scope of the reaction
is limited, as the examples shown employ Me, Et, i-Pr, and Bu
groups, but it is interesting that this reaction follows a deoxy-
genative elimination pathway rather than an initial Arbuzov and
subsequent deoxygenation pathway. The current result appears
to be similar to the triethyl phosphite reaction with bromonitro-
First Update
alkanes reported by Allen.39 However, Stirling40 and Donnelly41
reported the formation of nitriles from bromonitromethane and
Sagar Shakya
bromophenylnitromethane when reacted with triethyl phosphite.
Array BioPharma, Boulder, CO, USA
Br O OMe
P(OMe)3
Arbuzov and Perkow Reactions. Phosphonate25 and enol
P
OMe
(25)
phosphate synthesis via Arbuzov and Perkow reactions26 of
CHCl3
R NO2
OH
50 62% R N
trimethyl phosphite continue to dominate the literature reported
(84 88% HPLC yield)
for this reagent in the past decade. Ä…-Bromoacetamide deriva-
tives of isoxazoline chiral auxiliaries gave the Arbuzov product
in >89% yield when a phosphite and the bromide were heated
in toluene (eq 23).27 The corresponding Perkow product was not Radical or Carbene Trapping. Aryl or vinyl radicals react
reported. with trimethyl phosphite to give the corresponding phosphonates.
Aryl radicals generated by photolysis of aryl halides gave high
yields of phosphonates with trialkyl phosphites (eq 26).40 Vinyl
O
O O
radicals react similarly with trialkyl phosphites to give vinyl phos-
Br MeO P
MeO phonates (eq 27).42,43 The oxophilicity of trimethyl phosphite fa-
O O
N N
vors selective trapping of oxygen radicals in the presence of carbon
P(OMe)3
radicals.44
89% (23)
hydrogen donor, AIBN
RBr
C6H6, P(OMe)3
L-2-Amino phosphonobutanoic acid was prepared from the
61 93%
bromide derived from L-homoserine by an Arbuzov reaction.28
O
Additional examples of the Arbuzov reaction appeared in the syn-
RP (26)
OMe
thesis of pancratistatin,29 binaphthyls,30 vinyl phosphonates,31
OMe
phosphono methoxy ethoxy adenine,32 farnesyl phosphonate,33
and phosphono boronates.34 Microwave-assisted Arbuzov reac-
tions in the presence of Al2O3 under solvent free conditions have The reaction of trimethyl phosphite with carbenes gives a new
also been reported.35 In the large scale synthesis of Lescol, class of phosphorus ylides.45 These oxygenated ylides have never
trimethyl phosphite (eq 24) was replaced by dimethyl phos- been reported perhaps due to the Arbuzov reaction of the trialkyl
phonate and sodium hydride to avoid the toxic methyl chloride phosphites with alkyl halides. However, analogous reactions of
by-product.36 This modification provided harmless sodium chlo- phosphines with alkyl halides have been commonly used to gen-
ride as a by-product. erate nonoxygenated phosphorus ylides.
Avoid Skin Contact with All Reagents
4 TRIMETHYL PHOSPHITE
R2 Br
hydrogen donor, AIBN
Addition to Iminium Carbon. Trimethyl phosphite adds to
iminium ions to give Arbuzov products. For example, a hetero-
R3 R1 C6H6, P(OMe)3
Diels-Alder adduct is trapped in situ with trimethyl phosphite to
70 83%
give phosphonates in quantitative yield (eq 30).55
O
O
R2 P(OMe)2
OTMS
P(OMe)3 P OMe
OMe
N N
N N
(27)
TMSOTf (30)
R3 R1
ROOC COOR
(quant) ROOC COOR
E/Z mixtures as high as
94:6
Saidi and co-workers reported the addition of trimethyl- and
triethyl phosphites to imines under solvent free conditions in the
presence of solid LiClO4.56
Ä…
Ä… Phosphonates. Acyl chlorides upon treatment with
Ä…-Acyl
trimethyl phosphite gave somewhat unstable Ä…-ketophosphonates
Conjugate Addition. Trialkyl phosphites added to 3-É-
that decomposed over several days at room temperature. These
bromoacetyl coumarins to give the corresponding conjugate
ketophosphonates could be converted to enol benzoates by
adducts in good yields in the presence of p-TsOH (eq 31).57 With a
reaction with benzoic anhydride and DBU (eq 28). These deriva-
weaker acid such as acetic acid the same substrate gave enol phos-
tives are useful precursors for the enantioselective synthesis of
phates via a Perkow reaction.58 Thus, the selectivity appears to be
Ä…-hydroxy phosphonate derivatives.46 Some of the acyl phospho-
dependent upon the nature of the acid used.
nates are found to be inhibitors of HIV-1.47 Ä…,²-Unsaturated acyl
phosphonates have been shown to be versatile reagents for enan-
MeO O
P OH
tioselective indole Friedel-Crafts alkylations,48 and enantioselec-
MeO
tive hetero-Diels-Alder reactions.49 Br
P(OMe)3
TsOH
O OBz
1. P(OMe)3, 0 70 °C O O
82%
(28)
R R OMe
Cl 2. Bz2O, DBU, 0 25 °C P
OMe
O
43 86% (31)
O
Br
O
Similarly, acid chlorides bearing a distal azide functional group
P OMe
O O
gave acyl phosphonates upon reaction with trimethyl phosphite in
O
OMe
82 90% yield. Thus, it appears that the Staudinger-type reaction at
P(OMe)3
azide is less significant in these substrates. However, further treat-
AcOH
ment with triphenylphosphine resulted in five- or six-membered
O O
84%
azaheterocycles.50
Trimethyl phosphite along with higher trialkyl phosphites react
Michael induced ring closure (MIRC) reactions mediated by
with chlorothioformates generated in situ from alkanethiols and
trimethyl phosphite gave cyclopropyl phosphonates with suitable
phosgene, to yield phosphonothiolformates.51 Earlier methods for
substrates (eq 32).59
the preparation of these reagents suffer from the degradation of
isocyanates or phosphorus reagents used as the starting materials.
O
R
R
MeO P
P(OMe)3
Ä… Br EWG
Ä… Phosphonic Acids. The insertion of trimethyl phos-
Ä…-Amino
MeO
EWG
phite into oxazolidine and subsequent deprotection provides a nice
(32)
R1R2 EWG 30 76% R1
method of preparing Ä…-amino phosphonic acids (eq 29).52,53
R2 EWG
Ph
Similarly, 4-phosphono ²-lactams were obtained by the addi-
P(OMe)3, SnCl4
tion of phosphite to acyl iminium salts (eq 33).60
O
N
56 92%
Ph
O
O
R
+ Cl R
Cl R
P(OMe)3
N NaH
N
24 56% 71 99%
Ph
O Ar H
O
Ar H
P
OMe
H2N P OH
N P O
O
(29) OMe
OH
OMe
Ph
S/R > 85/15
O R
N
(33)
More extensive examples of the use of trialkyl phosphites for O
P
the preparation of azaheterocyclic phosphonates are found in the
OMe
Ar
OMe
review by Stevens and co-workers.54
A list of General Abbreviations appears on the front Endpapers
TRIMETHYL PHOSPHITE 5
(_) menthol, P(OMe)3
Benzylic alcohols bearing o-aniline substituents reacted with
O
Et3N, CH2Cl2
trimethyl phosphite in the presence of acids such as methanesul-
Br S Cl
fonic acid. These reactions are believed to proceed via o-quinoids
O
to give phosphonates (eq 34).61
O
O
(37)
Br S
Omenthyl
OMe
OH P
OMe
P(OMe)3 57% (S)
NH NH
(34)
MsOH, CH2Cl2
+
O-
O N
R R
R1
P(OMe)3, 100 °C
COOEt
R2
>93%
OTDS
O N
R1
Additive for Organometallic Reagents. Knochel and co-
COOEt
R2 (38)
workers used trimethyl phosphite for inhibiting homocoupling
OTDS
by-products in the cross-coupling of arylmagnesium bromides
with alkyl iodides bearing a variety of functional groups.62
Deoxygenation of peroxides by using trimethyl phosphite as a
Rhodium-catalyzed allylic aminations have also been performed
reducing agent was applied in the preparation of benzylic alcohol
in the presence of trimethyl phosphite (eq 35).63
by Foote.69 Similarly Matsusita et al. used it to convert styrenes
and Ä…,²-unsaturated esters to benzylic alcohols and Ä…-hydroxy
1. LiHMDS, cat RhCl(PPh3)3
esters, respectively.70
P(OMe)3, 30 °C
BnO
BnO
(35)
OCO2Me
N Displacement at Nitrogen. Even though trimethyl phosphite
TsNH
Ts
Ph is a good thiophile, surprisingly, the reaction occurs at nitrogen
Ph
instead of the expected reaction at sulfur in the following example
2. Grubb s cat PhH
(eq 39).71
74%
N
N
P(OMe)3
S
48 91%
Use in Cuprate Chemistry. Radetich and Corey used S
trimethyl phosphite in a cuprate reaction to prepare an al-
lyltrimethylsilane derivative (eq 36).64
N
N
O (39)
S
P
+
OEt
S
(MeO)3PCuSiMe3
OEt
OTBS
81%
MsO
Sulfur Extrusion. A photolytic sulfur extrusion reaction has
been used to synthesize cyclophanes.72 Georghiou and co-workers
(36)
applied this method to the following example, where desulfuriza-
OTBS
Me3Si
tion and deoxygenation occurred with concomitant formation of
carbon-carbon bonds (eq 40).73
Deoxygenation. (S) p-Bromophenyl menthyl sulfinate was
prepared in 57% yield by Naso65 using trimethyl phosphite as
a reducing agent (eq 37).66 This protocol is a modification of an P(OMe)3, uv
S MeO S
OMe
(40)
earlier protocol developed by Sharpless and Klunder.67 Sharpless
33%
has shown that a variety of sulfonyl chlorides react with menthol
under similar conditions to give 22 96% yield of menthyl sulfinate
esters in one step from readily available sulfonyl chlorides. The
alternate preparations require sulfinic acids or sulfinyl chlorides;
additional steps are usually required due to the lack of commercial
sources of sulfinic acids or chlorides.
Dihydroisooxazole 2-oxides are deoxygenated using trimethyl Phosphate Esters. Oza and Corcoran reported a method to
phosphite in good yield (eq 38).68 prepare phosphate esters from alcohols (eq 41).74 Deprotection
Avoid Skin Contact with All Reagents
6 TRIMETHYL PHOSPHITE
of the methyl ester could be achieved by treatment with trimethyl- 17. Suarato, A.; Lombardi, P.; Galliani, C.; Franceschi, G., Tetrahedron Lett.
1978, 4059.
silyl chloride and sodium iodide in acetonitrile.
18. Dershowitz, S.; Proskauer, S., J. Org. Chem. 1961, 26, 3595.
O
CBr4, py OMe 19. Hunziker, F.; Mullner, F. X., Heterocycles 1958, 41, 70.
(MeO)3P
ROH +
RO P (41)
20. Peace, B. W.; Carman, F.; Wulfman, D. F., Synthesis 1971, 658.
70 98%
OMe
21. Pelliciari, R.; Cogolli, P., Synthesis 1975, 269.
22. Bien, S.; Gillon, A., Tetrahedron Lett. 1974, 3073.
23. House, H. O.; Fischer, W. F., Jr., J. Org. Chem. 1968, 33, 949.
1. Schuetz, R. D.; Jacobs, R. L., J. Org. Chem. 1961, 26, 3467. 24. (a) Szmuskovicz, J., Org. Prep. Proced. Int. 1972, 4, 51. (b) Kamai, G.;
Kukhtin, V. A.; Strogova, O. A., Chem. Abstr. 1957, 51, 11 994b.
2. Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals,
25. Savignac, P.; Iorga, B., Modern Phosphonate Chemistry; CRC Press:
3rd ed.; Pergamon: New York, 1988, p 297.
Boca Raton, 2003.
3. For reviews of the Arbuzov reaction, see: (a) Arbuzov, B. A., Pure
26. Engel, R.; Cohen, J. I., Synthesis of Carbon-Phosphorus Bonds,
Appl. Chem. 1964, 9, 307. (b) Kosolapoff, G. M., Org. React. 1951,
2nd ed.; CRC Press: Boca Raton, 2004.
6, 273. (c) Redmore, D., Chem. Rev. 1971, 71, 315. (d) Bhattacharya,
A. K.; Thyagarajan, G., Chem. Rev. 1981, 81, 415. (e) Cadogen, J.
27. Abiko, A.; Masamune, S., Tetrahedron Lett. 1996, 37, 1077.
I. G. Organophosphorus Reagents in Organic Synthesis; Academic:
28. Nair, S. A.; Lee, B.; Hangauer, D. G., Synthesis 1995, 810.
New York, 1979. For application to the synthesis of alkenes, see: (f)
29. Kim, S.; Ko, H.; Kim, E.; Kim, D., Org. Lett. 2002, 4, 1343.
Horner, L.; Hoffman, H.; Wipple, H. G., Chem. Ber. 1958, 91, 61. (g)
30. Gómez, R.; Segura, J. L.; Martín, N., Org. Lett. 2000, 2, 1585.
Horner, L.; Hoffman, H.; Wipple, H. G., Chem. Ber. 1959, 92, 2499.
31. Sainz-Diaz, C. I.; Galvez Ruano, E.; Hernandez -Laguna, A.; Bellanato,
(h) Wadsworth, W. S., Jr.; Emmons, W. D., J. Am. Chem. Soc. 1961,
J., J. Org. Chem. 1995, 60, 74.
83, 1733. For reviews see: (i) Wadsworth W. S., Org. React. 1977, 25,
73. (j) Boutagy, J.; Thomas, R., Chem. Rev. 1974, 74, 87. (k) Carey,
32. Serafinowska, H. T.; Ashton, R. J.; Bailey, S.; Harnden, M. R.; Jackson,
F. A.; Sundberg, R. J. Advanced Organic Chemistry, 3rd ed.; Plenum:
S. M.; Sutton, D., J. Med. Chem 1995, 38, 1372.
New York, 1990; Part B, pp 100. (l) Wadsworth, W. S., Jr.; Emmons,
33. Patel, D. V.; Gordon, E. M.; Schmidt, R. J.; Weller, H. N.; Young, M. G.;
W. D., Org. Synth. 1965, 45, 44. (m) Roush, W. R., J. Am. Chem. Soc.
Zahler, R.; Barbacid, M.; Carboni, J. M.; Gullo-Brown, J. L.; Hunihan,
1978, 100, 3599. (n) Nicolaou, K. C.; Bertinato, P.; Piscopio, A. D.;
L.; Ricca, C.; Robinson, S.; Seizinger, B. R.; Tuomari, A. V.; Manne, V.,
Chakraborty, T. K.; Minowa, N., J. Chem. Soc., Chem. Commun. 1993,
J. Med. Chem. 1995, 38, 435. see also: Cermak, D. M.; Du, T.; Wiemer,
619 and references cited therein.
D. F., J. Org. Chem. 1999, 64, 388.
4. (a) Perkov, N.; Ullerich, K.; Meyer, F., Naturwissenschaften 1952, 39,
34. Pergament, I.; Srebnik, M., Tetrahedron Lett. 1999, 40, 3895.
353. For reviews of the Perkow reaction, see:(b) Lichtenthaler, F. W.,
35. Kaboudin, B.; Balakrishna, M. S., Synth. Commun 2001, 31, 2773.
Chem. Rev. 1961, 61, 607. (c) Arbuzov, B. A., Pure Appl. Chem. 1964,
36. Repi%0Å„, O.; Prasad, K.; Lee, G. T., Org. Proc. Res. Dev 2001, 5, 519.
9, 307.
37. Krawczyk, E.; Owsianik, K.; Skowronska, A., Tetrahedron 2005, 61,
5. (a) Seyferth, D.; Marmor, R. S.; Hilbert, P. J., J. Org. Chem. 1971, 36,
1449.
1379. (b) Colvin, E. W.; Hamill, B. J., J. Chem. Soc., Chem. Commun.
38. Kim, K. S.; Hurh, E. Y.; Youn, J. N.; Park, J. I., J. Org. Chem. 1999, 64,
1973, 151. (c) Colvin, E. W.; Hamill, B. J., J. Chem. Soc., Perkin Trans.
9272.
1 1977, 869. (d) Gilbert, J. C.; Weerasooriya, U., J. Org. Chem. 1979,
44, 4997. (e) Nakatsuka, M.; Ragan, J. A.; Sammakia, T.; Smith, D. B.; 39. Allen, J. F., J. Am. Chem. Soc. 1957, 79, 3071.
Uehling, D. E.; Schreiber, S. L., J. Am. Chem. Soc. 1990, 112, 5583.
40. Fishwick, B. R.; Rowles, D. K.; Stirling, C. J. M., J. Chem. Soc. Perkin
Trans1 1986: 1171.
6. Ramirez, F.; Desai, N. B., J. Am. Chem. Soc. 1963, 85, 3252.
41. Burgess, H.; Donnely, J. A., Tetrahedron 1991, 47, 111.
7. Ramirez, F.; Desai, N. B.; Ramanathan, N., Tetrahedron Lett. 1963, 323.
42. Jiao, X. Y.; Bentrude, W. G., J. Org. Chem. 2003, 68, 3303.
8. (a) Knowles, W. S.; Thompson, Q. E., J. Org. Chem. 1960, 25, 1031.
(b) Stille, J. K.; Foster, R. T., J. Org. Chem. 1963, 28, 2703. (c) Stevens,
43. Jiao, X. Y.; Bentrude, W. G., J. Am. Chem. Soc. 1999, 121, 6088.
R. V.; Beaulieu, N.; Chan, W. H.; Daniewski, A. R.; Takishi, T.; Waldner,
44. Ding, B.; Bentrude, W. G., J. Am. Chem. Soc. 2003, 125, 3248.
A.; Willard, P. G.; Zutter, U., J. Am. Chem. Soc. 1986, 108, 1039.
45. Aggarwal, V. K.; Fulton, J. R.; Sheldon, C. G.; de Vicente, J., J. Am.
(d) Murray, R. W., Acc. Chem. Res. 1968, 1, 313.
Chem. Soc. 2003, 125, 6034.
9. Grundmann, C.; Frommeld, H. D., J. Org. Chem. 1965, 30, 2077.
46. Burk, M. J.; Stammers, T. A.; Straub, J. A., Org. Lett. 1999, 1, 387.
10. (a) Seebach, D.; Enders, D.; Renger, B.; Brugel, W., Angew. Chem., Int.
47. Glabe, A. R.; Sturgeon, K. L.; Ghizzoni, S. B.; Musker, W. K.; Takahashi,
Ed. Engl. 1973, 12, 495. (b) Seebach, D.; Enders, D., Angew. Chem., Int.
J. N., J. Org. Chem. 1996, 61, 7212.
Ed. Engl. 1972, 11, 301.
48. Evans, D. A.; Scheidt, K. A.; Fandrick, K. R.; Lam, H. W.; Wu, J., J.
11. (a) Corey, E. J.; Winter, R. A. E., J. Am. Chem. Soc. 1963, 85, 2677.
Am. Chem. Soc. 2003, 125, 10780.
(b) Corey, E. J.; Carey, F. A.; Winter, R. A. E., J. Am. Chem. Soc. 1965,
49. Evans, D. A.; Johnson, J. S., J. Am. Chem. Soc. 1998, 120, 4895.
87, 934.
50. Khoukhi, N.; Vaultier, M.; Carrié, R., Tetrahedron 1987, 43, 1811.
12. For a review see: Block, E., Org. React. 1983, 30, 457.
51. Salomon, C. J.; Bruer, E., Synlett 2000, 815.
13. Bauer, D. P.; Macomber, R. S., J. Org. Chem. 1976, 41, 2640.
52. Maury, C.; Gharbaoui, T.; Royer, J.; Husson, H. P., J. Org. Chem. 1996,
14. Mills, W. H.; Saunders, B. C., J. Chem. Soc. 1931, 537.
61, 3687.
15. Corey, E. J.; Markl, G., Tetrahedron Lett. 1967, 3201.
53. Maury, C.; Wang, Q.; Gharbaoui, T.; Chiadmi, M.; Tomas, A.; Royer, J.;
16. (a) Brown, W. L.; Fallis, A. G., Tetrahedron Lett. 1985, 26, 607.
Husson, H. P., Tetrahedron 1997, 53, 3627.
(b) Bickart, P.; Carson, F. W.; Jacobus, J.; Miller, E. G.; Mislow, K., J.
54. Moonen, K.; Laureyn, I.; Stevens, C. V., Chem. Rev. 2004, 104, 6177.
Am. Chem. Soc. 1968, 90, 4869. (c) Tang, R.; Mislow, K., J. Am. Chem.
55. Kaname, M.; Arakawa, Y.; Yoshifuji, S., Tetrahedron Lett. 2001, 42,
Soc. 1970, 92, 2100. (d) Grieco, P., J. Chem. Soc., Chem. Commun.
2713.
1972, 702. (e) Evans, D. A.; Andrews, G. C., Acc. Chem. Res. 1974, 7,
56. Azizi, N.; Rajabi, F.; Saidi, M. R., Tetrahedron Lett. 2004, 45, 9233.
147. (f) Hoffman, R. W.; Goldman, S.; Maak, N.; Gerlach, R.; Frickel,
F.; Steinbach, G., Chem. Ber. 1980, 113, 819. (g) Isobe, M.; Iio, H.; 57. Nikolova, R. D.; Bojilova, A. G.; Rodios, N. A., Tetrahedron 2004, 60,
Kitamura, M.; Goto, T., Chem. Lett. 1978, 541. 10335.
A list of General Abbreviations appears on the front Endpapers
TRIMETHYL PHOSPHITE 7
58. Nikolova, R. D.; Bojilova, A. G.; Rodios, N. A., Tetrahedron 1998, 54, 66. Cho, G. Y.; Okamura, H.; Bolm, C., J. Org. Chem. 2005, 70,
14407. 2346.
59. Stevens, C. V.; Heecke, G. V.; Barbero, C.; Patora, K.; De Kimpe, N.; 67. Klunder, J. M.; Sharpless, K. B., J. Org. Chem. 1987, 52, 2598.
Verhé, R., Synlett 2002: 1089.
68. Marotta, E.; Micheloni, L. M.; Scardovi, N.; Roghi, P., Org. Lett. 2001,
60. Stevens, C. V.; Vekemans, W.; Moonen, K.; Rammeloo, T., Tetrahedron 3, 727.
Lett. 2003, 44, 1619.
69. Greer, A.; Vassilikogiannakis, G.; Lee, K. C.; Koffas, T. S.; Nahm, K.;
61. Mugrare, B.; Diefenbacher, C.; Somers, J.; Parker, D. T.; Parker, T., Foote, C. S., J. Org. Chem. 2000, 65, 6876.
Tetrahedron Lett. 2000, 41, 2047.
70. Matsusita, Y.; Sugamoto, K.; Matsui, T., Chemistry Lett 1993, 925.
62. Dohle, W.; Lindsay, D. M.; Knochel, P., Org. Lett. 2001, 3, 2871.
71. Brownbridge, P.; Jowett, I. C., Phosphorus Sulfur 1988, 35, 311.
63. Evans, P. A.; Robinson, J. E.; Moffett, K. K., Org. Lett. 2001, 3, 3269.
72. Boekelheide, V.; Reingold, I. D. Tuttle, M., J. Chem. Soc. Chem.
See also Evans, P. A.; Robinson, J. E., Org. Lett. 1999, 1, 1929.
Commun. 1973, 406.
64. Radetich, B.; Corey, E. J., J. Am. Chem. Soc. 2002, 124, 2430.
73. Ashram, M.; Miller, D. O.; Bridson, J. N.; Georghiou, P. E., J. Org. Chem.
65. Capozzi, M. A. M.; Cardellicchio, C.; Naso, F.; Spina, G.; Tortorella, P. 1997, 62, 6476.
J., J. Org. Chem. 2001, 66, 5933.
74. Oza, V. B.; Corcoran, R. C., J. Org. Chem. 1995, 60, 3680.
Avoid Skin Contact with All Reagents
Wyszukiwarka
Podobne podstrony:
trimethyl phosphate eros rt280Aquarium Aquaristik Amtra Manual Phosphatreductphenylcopper eros rp058peracetic?id eros rp034palladium on?rium sulfate eros rp003iodine eros ri005benzyl bromide eros rb047palladium II?etate eros rp001zinc borohydride eros rz004potassium permanganate eros rp244nickel?talysts heterogeneous eros rn011boric?id eros rb242sodium amide eros rs041hydrogen peroxide urea eros rh047zinc bromide eros rz005tin IV chloride zinc chloride eros eros rt115sodium bromide eros rs054nickel in charcoal eros rn00732ozone eros ro030więcej podobnych podstron