p40 010

10. (a) Let the quantum numbers of the pair in question be n and n + 1, respectively. Then En+1 - En =
E1(n +1)2 - E1n2 =(2n +1)E1. Letting
En+1 - En =(2n +1)E1 =3(E4 - E3) =3(42E1 - 32E1) =21E1 ,
we get 2n + 1 = 21, or n = 10.
(b) Now letting
En+1 - En =(2n +1)E1 =2(E4 - E3) =2(42E1 - 32E1) =14E1 ,
we get 2n + 1 = 14, which does not have an integer-valued solution. So it is impossible to find the
pair of energy levels that fits the requirement.

Wyszukiwarka

Podobne podstrony:
p400
T0 7
P40
knig?81440601187 oeb?0 r1
07a?0 Information and Communication
casio edifice efa 1190
byer?81101086520 oeb?0 r1
KMGP 20 5D B2 Y 5x40 I V H0 Oe tp20 ms 6
plain foot010 123

więcej podobnych podstron