Telecommunication Systems and Networks 2011 2012 Lecture 6


Telecommunication Systems
and Networks
Tomasz Kacprzak
Technical University of Aódz
Institute of Electronics
Wólczańska Street 211/215, 3th floor, room 317b
90-924 Aódz
e-mail: tomasz.kacprzak@.p.lodz.pl
phone: +48-42 6312623
Telecommunication Systems
and Networks
LECTURE 6
Objective of the course
To gain fundamental understanding of the key
concepts behind communication systems and
networks engineering - in order to provide basic
skills in design and performance analysis of
these networks and services offered for end
users.
Prerequisites:
mathematics, basic electrical engineering,
physics.
Telecommunication Systems and Networks
2011-2012
3
Tomasz Kacprzak - Lecture 6
network network
Data link Data link
physical physical
network
R1 R3
Data link
physical
R4
H1
WAN
application
transport
LAN 1
network
R2
LAN 2
data link
physical
application
H2 transport
network
data link
physical
Telecommunication Systems and Networks
2011-2012
4
Tomasz Kacprzak - Lecture 6
Routing in WANs
Shortest Path Routing - Dijkstra s Algorithm
W(Ą,-) Y(Ą,-)
1
2
3
1
4
2
V (Ą,-)
source
X(Ą,-)
Z (Ą,-)
destination
7
Telecommunication Systems and Networks
2011-2012
5
Tomasz Kacprzak - Lecture 6
Each node j is labeled with:
1. Cost of reaching the node
2. Label of the one node back on the route
Example: W(2,V)
W(Ą,-) Y(Ą,-)
Step1 - initialization
1
2
3
1
4
2
V (0,-)
source
X(Ą,-)
Z (Ą,-)
destination
7
Nodes
V W X Y Z
Cost
0 Ą Ą Ą Ą
Last node - - - - -
N N N N N
Determination
Telecommunication Systems and Networks
2011-2012
6
Tomasz Kacprzak - Lecture 6
Step 2
" Choose the nondermined node with
V W X Y Z
lowest cost; this is V
0 2 4 Ą 7
" Lebel it as determined and check out its
nondetermined neighbours; they are W,
- V V - V
X and Z
D N N N N
" Change their actual costs and previous
node
W(2,V) Y(Ą,-)
1
2
3
1
4
2
V (0,-)
source
X(4,V)
Z (7,V)
destination
7
Telecommunication Systems and Networks
2011-2012
7
Tomasz Kacprzak - Lecture 6
Step 3
" Choose the nondetermined node with lowest
V W X Y Z
cost; this is W
" Lebel it as determined and check out its
0 2 3 3 7
nondetermined neighbours; they are X and Y
- V W W V
" The cost to X through W is 2+1 < 4, change
D D N N N
information to 3, also the cost to Y is 2+1 < Ą,
change information to 3
W(2,V) Y(3,W)
1
2
3
1
4
2
V (0,-)
source
X(3,W)
Z (7,V)
destination
7
Telecommunication Systems and Networks
2011-2012
8
Tomasz Kacprzak - Lecture 6
Step 4
" Choose the nondetermined node with
V W X Y Z
lowest cost; this is X
0 2 3 3 5
" Lebel it as determined and check out its
nondetermined neighbours; it is Z
- V W W X
" The cost to Z through X is 3+2 < 7, change
D D D N N
information to 5 < Ą
W(2,V) Y(3,W)
1
2
3
1
4
2
V (0,-)
source
X(3,W)
Z (7,V)
destination
7
Telecommunication Systems and Networks
2011-2012
9
Tomasz Kacprzak - Lecture 6
Step 5
" Choose the nondetermined node with
V W X Y Z
lowest cost; this is Y
0 2 3 3 5
" Lebel it as determined and check out its
nondetermined neighbours; it is only Z
- V W W X
" The cost to Z through Y is 3+3 > 5,
D D D D N
therefore the cost is not changed
W(2,V) Y(3,W)
1
2
3
1
4
2
V (0,-)
source
X(3,W)
Z (7,V)
destination
7
Telecommunication Systems and Networks
2011-2012
10
Tomasz Kacprzak - Lecture 6
Step 6
" Choose the nondetermined node with
V W X Y Z
lowest cost; this is Z
0 2 3 3 5
" Lebel it as determined and check out its
nondetermined neighbours;
- V W W X
" No nondermined neighbours
D D D D D
" The algorithm is completed.
W(2,V) Y(3,W)
1
2
3
1
4
2
V (0,-)
source
X(3,W)
Z (7,V)
destination
7
Telecommunication Systems and Networks
2011-2012
11
Tomasz Kacprzak - Lecture 6
Step 7
V W X Y Z
" Determine the shortest path
0 2 3 3 5
" Take inverse sequence from the
destination W to the source V through the
- V W W X
previous nodes
D D D D D
" The shortest path is V W X Z
" with minimum cost 5
W(2,V) Y(3,W)
1
2
3
1
4
2
V (0,-)
source
X(3,W)
Z (7,V)
destination
7
Telecommunication Systems and Networks
2011-2012
12
Tomasz Kacprzak - Lecture 6
ALGORITHM
Initialization
1. Mark all nodes as being  unscanned U
2. Set d(i,i) = 0 (value), distance from node i to itself
3. Set d(i,j) = Ą for all node j not equal to it i
4. Set d(i,j) = l(i,j) , where
l(j,k) is the length of the link from j to k
5. Set the pointer at j to i for all nodes j directly adjacent
to i.
Telecommunication Systems and Networks
2011-2012
13
Tomasz Kacprzak - Lecture 6
ALGORITHM
Run
1. Mark node i as being  scanned S
2. If all nodes are  scanned , stop the algorithm,
otherwise:
3. Find the  unscanned node j with the smallest d(i,j)
4. Scanning
for all nodes k directly adjacent to j
if d(i,j) + l(j,k) < d(i,k)
then d(i,k) := d(i,j) + l(j,k)
and set the pointer at k to j
otherwise no change .
5. Mark node j as having been  scanned
6. Go to 2
Telecommunication Systems and Networks
2011-2012
14
Tomasz Kacprzak - Lecture 6
Dijkstra s Algorithm
Task to solve  find trace from C to E with minimum cost
A
B
3
3
2
2
1 E
2
C
D
4
5
3
2
G
F
Telecommunication Systems and Networks
2011-2012
15
Tomasz Kacprzak - Lecture 6


Wyszukiwarka

Podobne podstrony:
Systemy i sieci telekomunikacyjne 2011 2012 Wykład 3
Systemy i sieci telekomunikacyjne 2011 2012 Wykład 8
Systemy i sieci telekomunikacyjne 2011 2012 Wykład 5
MIERNICTWO I SYSTEMY POMIAROWE I0 04 2012 OiO
TEST 2011 2012 Wojewodzki Konkurs Fizyczny etap rejonowy
Egzamin materialy WM ZiP 2011 2012
MATERIAŁOZNAWSTWO STOMATOLOGICZNE egzamin 2011 2012
Articulation and acoustics Ladefoged and Johnson (2011; 8 17)
05 Wybrane akty prawne 2011 2012
IIrI°stac 2011 2012 lato
Faktury TOYA (2011, 2012, styczeń 2013)
jak rozliczac najem za 2011 i 2012 infor biznes
[Mises org]Hayek,Friedrich A A Free Market Monetary System And Pretense of Knowledge
prezentacja MS Project Szukański 2011 2012
Electronics 4 Systems and procedures S

więcej podobnych podstron