az+b
(z) = C
cz+d
" G
A " GL2, hA (z)
" Hol (G) G Mer (G) Har (G)
A, B " GL2, hA ć% hB = hAB
G
" = 0, hA = hA
hdd = hI
Ż
" C (G) G
2 hA 3 hI
z1, z2, z3, z4 " C [z1, z2, z3,z4] = [ (z1) , (z2) , (z3) , (z4)]
w1, w2, w3,w4 " C "1d"jd"4T zj = wj
S !! Sc C1 - C2 z, [z]" z, [z]"
C1 C2
G " C
z2, z3, z4 C [z1]" , z2, z3, z4 = [z1, z2, z3,z4]
C
G X ą" G X \ G
zj, 1 d" j d" 4 (z1, z2, z3, z4) " R
X = G X = "
a, b " G. a b
f : G C f
G ą" C u1, u2 u1 - u2 a"
f : G R "ą, .f (ą) =
1
G ą" C l : G C l " Hol (G) l (z) =
s, f () = t ! [s, t] ą" (f)
z
f (: G C) " Hol (G) u log (f) u
ł : [a, b] C " : [a, b] C e(t) = ł (t)
f (z)
"z " G.u (z) =
ą2Ąi
f(z)
1 dz
(z0) =
f (: G C) " Hol (G) z0 " G, f (z0) = 0 " > 0 D (z0, )
ł
2Ąi ł z-z0
log (f)
f
ł " G C1 f " Hol (ł) dz = 2Ąi (0)
fć%ł
ł f
f " Hol (G) ; ł0, ł1 : [ą, ] G ł0 <" ł1 ! f = f
ł0 ł1
G
a
ł C
{un (z)}" G {Mn}"
n=0 n=0
G
supz"G |un| < Mn
ł f " Hol (G) f = 0
ł
"
Mn < +"
n=0
f " Hol (G) F (z) = f
zz0
"
un (z) G
n=0
ł z0 " G (z0) = 0
/
ł
"
"
f " Hol (G) log f, f cn
cnzn R = limn" cn+1 R-1 =
n=0
n
limn" sup |an|
f " Hol (G) , ł " G G !! C\G !!
"z0 " G, (z0) = 0 !! f = 0 !! f G
/
ł "
ł
f (z) = cn (z - z0)n R " [0, "]
n=0
log f " Hol (G)
D (z0, R)
G1, G2 " C f : G1 G2 f-1 G1
|z - z0| > R
!! G2
"
f (z) D (z0, R) f (z) = cnn (z - z0)n-1
Hol (D) f : D D f (0) = 0 |f (z)| d" |z| n=1
f (z)
f (z) = z, || = 1
Hol (D) f : D D f (0) = 0 " [0, 2Ą]
f (z) = eiz
" "
n!
f (z) = cn (z - z0)n C" D (z0, R) f(k) (z) = cn (z - z0)n-k
n=0 n=k (n-k)!
z-a
f(k)(z0)
f : D D D |a| < 1, " [0, 2Ą] f (z) =
1-az z = z0 : = ck
k!
z0 = 0 f
G " C G = C
"
f : G D f (a) = 0, R f (a) > 0
G (z) = cn zn+1
n=0 n+1
1-|f(z)|2 f(z)-f(w) n"
z-w
f : D D |f (z)| d" d"
n |cn| 0 f (z) = cnzn limR n1 f (x) = L
1-zw
1-|z|2 1-f(z)f(w)
cn = L
|zn-1|
cn zn n" 1 sup < " limn" f (zn) =
1-|zn|
d
cn
f z0 g w0 = f (z0) g (f (z)) z=z0 =
dt
g (w0) f (z0)
f x0 !!
f : G C ł : [a, b] G
f (z) dz = f (ł (b)) - f (ł (a))
ł
ł t0 f ł (t0) (f ć% g) = f ł
ł
f (ł (t0)) ł (t0)
Ł
0
b b b
f : [a, b] C f (t) dt = f (t) dt + i f (t) dt
a a a
f : G C f !! "z " G : f (z) = 0
ł2 ł1 f ł1 f = f
ł1 ł2
f : G C f
fn : G C fn ! f G
f : G C |f| G f ł : [a, b] C C1 fn f
ł ł
f : G C f (t) = 0, "z " G f
f d" (ł) supt"[a,b] |f (ł (t))|
(f (ł1) , f (ł2)) = (ł1, ł2) ł
f : C C R "z " C f (z) = az + bz G " C f : G C ł : [a, b] C1 > 0
Ż
"f "f
> 0 Ą = {a = t0 < . . . < tN = b} (Ą) <
a = (0) ; b = (0)
"z "z
Ż
N-1
f : G C R f
f - f (zi) (zi+1 - zi) < zi = ł (ti)
i=0
ł
łĄ f {Ą} - <
łĄ ł
f " Hol (G) f f
G " C f : G C T G
(f) , (f)
f = 0
ł
"u
u : G C " Hol (G)
"z
G " C f : G C f G
u : G R
G " C f : G C ł
f = 0
G = C v ł
G ąc
2Ą f D " C
1
z0 "z " D f (z) = f z + eit dt
2Ąi 0
Aut (D) f : D D, ł : [a, b] D C1 LH (ł) = LH (f ć% ł)
f LH [f ć% ł] d" LH [ł]
C"
f D (z0, R) "z "
" "D
D (z0, R) , f (z) = an (z - z0)n
n=0
f(z)dz
n!
an =
2Ąi "D(z0,R)
(z-z0)n+1
f(z)dz
n!
f(n) (z1) =
2Ąi "D(z0,R)
(z-z1)n+1
1 z
= ; zw = zw |z| |w| = |zw|
G
z
|z|2
f
P " C [z] P
" anzn p spf = a-1
g
" g, h z0 h =
z0 h
g(z0)
h (z0)
f : C D C
f
" f z0 m = m
z0 f
f : CP1 C
f : C C
" c n
G f " Hol (G) )" C G
1 dn-1
f = lim ((z - c)n f (z))
c
zc
(n - 1)! dzn-1
f G T " G
f (z) dz = 0 f G
"
"T
I " G f " Hol (G\I) )" C (G) f " Hol (G)
" limz" f (z) = 0 f = limz" z f (z)
"
1 1
" f = - f
" 0
w2 w
" f ć% g = (f (g (z0)) g (z0))
z0 z0
f z0 f m f (z) =
(z - z0)-m f (z) z = z0
(z - z0)m g (z) Hol (G) g (z) =
am z = z0
" r = limn" |a-n|1/n
f G 1
" = limn" |an|1/n
R
f, g " Hol (G) f = g A " G A f a" g
R
fn : G C
f
f " Hol (G)
(k)
k fn f(k)
"
f (z) = anzn A = {R1 < |z| < R2}
n=-"
f(z)
1
r " (R1, R2) an = dz
2Ąi |z|=r zn+1
f " Hol (A) A = {R1 < |z| < R2} {an}"
n=-"
"
f = anzn
n=-"
f D\ {z0} z0 z0 = "
f " Hol (D (z0, r) \ {z0}) z0 !! limzz0 |f (z)| = "
f z0 !! " > 0 f {D (z0, ) \ {z0}}
C
f # {C\f {D (z0, ) \ {z0}}} d" 1
f " Hol (D (z0, r) \ {z0}) "0 < < r, f (z) dz = 2Ąi f
z0
|z-z0|=
f
f " Mer (G) )" C G ! = 2Ąi (ZG - PG) "G
"G f
f, g " Hol (G) )" C G "z " "G |f (z) - g (z)| < |f (z)| Zf = Zg
G
f " Hol (G) f
f : G C f-1
1
f-1 (z) =
f (f-1(z))
f (z) dz = f (g (w)) g (w) dw
g(ł) ł
" f " Hol ({z | |z| > R}) "r > R, - f (z) dz = 2Ąi (f)
"
|z|=r
C
f " Hol (C) " ! f
f " Mer (C) " ! f
f " Hol (G) z0 " G, w0 = f (z0)
m > 0 > 0 |w - w0| <
m |z - z0| <
G f : G C
G f (z) dz = 0
"G
G\ {a1, . . . , an} f = 2Ąi f
ak
"G
f =
2Ąi (ak) f
ak
f(z)
1
ł " G z0 " G\ł (z0) f (z0) =
ł
2Ąi ł z-z0dz
Ż
D ą" C f D "z0 " D
f(z)
1
f (z0) =
2Ąi "D z-z0
f(ś)
1
G Hol (G) )" C G " f : G C dś =
2Ąi "G ś-z
0 z " G
/
f (z) z " G
Wyszukiwarka
Podobne podstrony:
Online Cash Machine Cheat SheetKidWorld GM Cheat Sheet[A Deitmar] Complex AnalysisjQuery 1 3 Visual Cheat Sheet by WOORKimpulse studios jquery cheat sheet 1 0Bash History Cheat Sheet [EN]css cheat sheet v2php cheat sheet v2Clean Code Cheat Sheet V1 3Mystery Method Cheat SheetFFRE Probability Cheat SheetCalculus Cheat Sheet Limits ReducedCalculus Cheat Sheet All ReducedAnalysingDocumentsanalysisoptionsSequencing and Analysis of Neanderthal Genomic1 5 Engineering Analysiswięcej podobnych podstron