example math document


Brandenburg Technical University Cottbus
Department 1, Institute of Mathematics
Chair for Numerical Mathematics an Scientific Computing
Prof. Dr. G. Bader, Dr. A. Pawell
Problem Session to the Course: Mathematics I
Environmental and Resource Management WS 2002/03
Solutions to Sheet No. 13 (Deadline: January, 27/28 2002)
Homework
H 13.1: Eigenvalues of A: 1 = -1, 2/3 = 1
Eigenvectors:
1 = -1:
ëÅ‚ öÅ‚
2 0 0
1
íÅ‚ Å‚Å‚
0 1 1 = 0, = (0, 1, -1)T , = (0, 1, -1)T
x x c1 "
2
0 1 1
2/3 = 1:
1
= (0, 1, 1)T , = (1, 0, 0)T
c2 " c3
2
ëÅ‚ öÅ‚
0 0 1
1 1
" "
íÅ‚ 0 Å‚Å‚
C = .
2 2
1 1
- " "
0
2 2
q( = T A = x2 + 2x2x3.
x) x x
1
B = C, CT AC = diag(1, -1, -1)
2 2 2
q(C = (C A(C = T CT AC = T diag(1, -1, -1) = y1 - y2 - y3.
y) y)T y) y y y y
ëÅ‚ öÅ‚
1 -  1 1
íÅ‚ Å‚Å‚
H 13.2: det(A - E) = det 0 1 -  5 =
0 -1 -1 - 
(1 - )[(1 - )(-1 - ) + 5] = (1 - )[4 + 2] = 0
Ò! 1 = 1, 2/3 = Ä…2i
Eigenvectors:
ëÅ‚ öÅ‚
1 -  1 1
íÅ‚ Å‚Å‚
0 1 -  5 = 0
x
0 -1 -1 - 
1 = 1:
ëÅ‚ öÅ‚
0 1 1
íÅ‚ Å‚Å‚
0 0 5 , = t(1, 0, 0)T
x
0 -1 -2
1 = 2i:
ëÅ‚ öÅ‚
1 - 2i 1 1
íÅ‚ Å‚Å‚
0 1 - 2i 5 = 0
x
0 -1 -1 - 2i
ëÅ‚ öÅ‚
T
1 - 2i 1 1
2i
íÅ‚ Å‚Å‚
0 -1 -1 - 2i = 0, = , -1 - 2i, 1
x x
1 - 2i
0 0 0
1 = -2i:
ëÅ‚ öÅ‚
1 + 2i 1 1
íÅ‚ Å‚Å‚
0 1 + 2i 5 = 0
x
0 -1 -1 + 2i
ëÅ‚ öÅ‚
T
1 + 2i 1 1
-2i
íÅ‚ Å‚Å‚
0 -1 -1 + 2i = 0, = , -1 + 2i, 1
x x
1 + 2i
0 0 0

1 -  1
H 13.3: det(A - E) = det = (1 - )(3 - ) - 1 = 2 - 4 + 2.
1 3 - 
Eigenvalues:
"
1/2 = 2 Ä… 2
"
Eigenvectors:  = 2 + 2
"
"
-1 - 2

"1 0, 1 (-1 + 2, 1)T
x = x =
"
1 1 - 2
4 - 2 2
"
 = 2 - 2
"
"
-1 + 2

"1 0, 1 (-1 - 2, 1)T
x = x =
"
1 1 + 2
4 + 2 2
2
ëÅ‚ " " öÅ‚
-1+ 2 -1- 2
" "
" "
4-2 2 4+2 2
íÅ‚ Å‚Å‚
B
1 1
" "
" "
4-2 2 4+2 2
"
2 + 2 0
"
B-1 = BT , B-1AB =
0 2 - 2
Additional Problems
ëÅ‚ öÅ‚
5 -  2 0
íÅ‚ Å‚Å‚
P 13.1: det(A - E) = det 2 5 -  0 =
0 0 3 - 

(3 - ) (5 - )2 - 4 = 2 - 10 + 21 = 0
Ò! 1 = 7, 2,3 = 3.
ëÅ‚ öÅ‚ ëÅ‚ öÅ‚
-2 2 0 1
1
íÅ‚ Å‚Å‚
"
2 -2 0 = 0, = 1
x x1 íÅ‚ Å‚Å‚
2
0 0 -4 0
ëÅ‚ öÅ‚ ëÅ‚ öÅ‚ ëÅ‚ öÅ‚
2 2 0 1 0
1
íÅ‚ Å‚Å‚
"
2 2 0 = 0, = -1 , = 0
x x2 íÅ‚ Å‚Å‚ x3 íÅ‚ Å‚Å‚
2
0 0 0 0 1
ëÅ‚ öÅ‚
1 1 0
1
íÅ‚ Å‚Å‚
C = " 1 -1
"0
2
0 0 2
ëÅ‚ öÅ‚ ëÅ‚ öÅ‚ ëÅ‚ öÅ‚
1 1 0 5 2 0 1 1 0
1
íÅ‚ Å‚Å‚ íÅ‚ Å‚Å‚ íÅ‚ Å‚Å‚
CT AC = 1 -1
"0 2 5 0 1 -1 "0 =
2
0 0 2 0 0 3 0 0 2
ëÅ‚ öÅ‚ ëÅ‚ öÅ‚ ëÅ‚ öÅ‚
14 0 0 7 0 0 1 0 0
1
íÅ‚ Å‚Å‚ íÅ‚ Å‚Å‚ íÅ‚ Å‚Å‚
0 6 0 = 0 3 0 = 0 2 0
2
0 0 6 0 0 6 0 0 3
b)
q( = T A = 5x2 + 4x1x2 + 5x2 + x2
x) x x
1 2 3
ëÅ‚ öÅ‚
7 0 0
2 2 2
íÅ‚ Å‚Å‚
q( := q(C = q( = T 0 3 0 = 7y1 + 3y2 + 3y3
y) y) x) y y
0 0 6
The transformation = C is an orthogonal transformation of the coor-
x y
dinate system. det C = 1 Ò! the transformation is a rotation of the
coordinate system.
ëÅ‚ öÅ‚ ëÅ‚ öÅ‚ ëÅ‚ öÅ‚
1 1 0 0 1 0 1 -1 0
1 1
íÅ‚ Å‚Å‚ íÅ‚ Å‚Å‚ íÅ‚ Å‚Å‚
C = " 1 -1
"0 = 1 0 0 "2 1 1 "0 =
2
0 0 2 0 0 1 0 0 2
3
ëÅ‚ öÅ‚ ëÅ‚ öÅ‚
Ä„ Ä„
0 1 0 cos - sin 0
4 4

Ä„ Ä„
íÅ‚ Å‚Å‚ íÅ‚ Å‚Å‚
1 0 0 sin cos 0
4 4
0 0 1 0 0 1
Ä„
Reflection about x2 = x1 and a rotation by around the origin.
4

0, i = j

P 13.2: C = ( . . . , T = , A = i
c1, cn), ci cj ci ci.
1, i = j
CT AC = CT (A . . . , A = CT (1 . . . , n =
c1, cn) c1, cn)
ëÅ‚ öÅ‚
1 T . . . n T
c1 c1 c1 cn
íÅ‚ Å‚Å‚
. . . = diag(1, . . . , n).
1 T . . . n T
cn c1 cn cn
P 13.3: The quadratic form q is given by

1 -1
q( = x2 - 2x1x2 + 2x2 = T A = T
x) x x x x
1 2
-1 2
Eigenvalues of A
(1 - )(2 - ) - 1 = 1 - 3 + 2 = 0
"
3 5
1/2 = Ä…
2 2
Eigenvectors:
T
" "
3 5 1 1 5
 = + Ò! = - , 1
c1
"
2 2 2 2
10 5
-
4 2
T
" "
3 5 1 1 5
 = - Ò! = + , 1
c1
"
2 2 2 2
10 5
+
4 2
C = ( c2)
c1,

" "
3 5 3 5
CT AC = diag + , -
2 2 2 2

" "
3 5 3 5
2 2
q(C = (C AC = T CT AC = + y1 + - y2
y) y)T y y y
2 2 2 2
Problems can be downloaded from the internet site:
http://www.math.tu-cottbus.de/<"pawell/education/erm/erm.html
4


Wyszukiwarka

Podobne podstrony:
Example document old
Simple State Machine Documentation
documentation
general training example writing 6 10
A Life In Pictures Documentary
Autograss documentation
2008 11 Maximum Math Free Computer Algebra with Maxima
Barrett Brown Sentencing Documents
Project manager CV example 1
csps software architecture document
ref math
Example01

więcej podobnych podstron