G01 Linear Traverse XYZ

{\rtf1\ansi\ansicpg1252\deff0\deflang2057{\fonttbl{\f0\fnil\fcharset0 MS Sans Serif;}{\f1\fswiss\fcharset0 Helvetica-Bold;}{\f2\fswiss\fcharset0 Helvetica;}{\f3\fnil MS Sans Serif;}{\f4\fnil\fcharset238 Arial Narrow;}}
{\colortbl ;\red255\green0\blue0;\red0\green0\blue0;}
\viewkind4\uc1\pard\qc\cf1\b\f0\fs20 G01 Linear Traverse XYZ
\par \pard
\par \cf0\f1\fs22 Functionality
\par \b0\f2\fs20 The tool moves from the starting point to the end point along a straight path defined by the X,Y and Z end positions. The \b\f1 path velocity \b0\f2 is determined by the programmed \b\f1 F word\b0\f2 .
\par All axes can be traversed simultaneously.\cf1\b\f0
\par \cf0\b0\f3\fs16
\par \cf1\b\f0\fs20 Example
\par
\par \cf2\b0\f4 M06 T01
\par G00 X0 Y10 Z2
\par G01 Z-10
\par G01 X12 Y12
\par G01 X35 Y22 RND=7
\par G01 Y80 X55 CHR=4
\par G01 X10
\par G00 Z2
\par M30\cf0\f3\fs16
\par }

Wyszukiwarka

Podobne podstrony:
G01 Linear Traverse
G01 Linear Traverse
G01 Linear Traverse
G01 Linear Traverse Y Angle
G01 Linear Traverse X Angle
G01 Linear Traverse
G01 Linear Traverse
G01 Linear Traverse
G01 Linear Traverse
Linear Traverse
G10 Linear Polar in Fast Traverse
Linear Fast Traverse
xyz blh
Soroka Linear Odd Poisson Bracket on Grassmann Algebra (2000) [sharethefiles com]
Cuartero et al Linearly Compact Algebraic Lie Algebras (1997) [sharethefiles com]

więcej podobnych podstron