SŁONECZNY UKŁAD, POWSTANIE.
Powstawanie gwiazd.
Gwiazdy powstają w gigantycznych kompleksach (obłokach) gazowo-pyłowych o masach rzędu 100 tys. mas Słońca i rozmiarach do 50 pc (parsek). Z kompleksów tych wydzielają się obłoki molekularne o temperaturze około 10 K, zbudowane głównie z wodoru (pył stanowi mniej niż 1% masy). Obłoki molekularne pozostają w równowadze z otaczającymi je obłokami mniej gęstego, ale gorętszego gazu. Naruszenie tej równowagi, które może być spowodowane siłami przypływowymi, z jakimi działają na obłoki blisko przechodzące gwiazdy, wybuchem supernowej lub wiatrem gwiezdnym, zapoczątkowuje fragmentację obłoków; fragmenty zapadają się grawitacyjnie (zagęszczają), co prowadzi do powstania gwiazd (tzw. protogwiazd). Zagęszczanie się szybko wirującego lub bardzo masywnego fragmentu prowadzi do powstania gwiazd podwójnych lub krotnych. Wokół pojedynczej gwiazdy powstają też, podczas gwałtownego zapadania się wirującej protogwiazdy o odpowiednim (nie za małym i nie za dużym) momencie pędu, dyski protoplanetarne (spłaszczone mgławice gazowe). Układ Słoneczny powstał z fragmentu obłoku o masie około 1,1 masy Słońca. Z danych kosmochemicznych wynika, że Słońce jest gwiazdą drugiej lub trzeciej generacji; oznacza to, że zostało utworzone nie z materiału pierwotnego, powstałego podczas Wielkiego Wybuchu (Wielkiego Wybuchu teoria), ale z materiału przetworzonego we wnętrzach poprzednich gwiazd. Pierwiastki ciężkie, stanowiące główny materiał planet, mogły powstać tylko we wnętrzach gwiazd lub w trakcie wybuchu supernowych.
Powstawanie planet.
Proces powstawania planet można podzielić na pięć etapów:
1. Powstanie dysku wokół protosłońca.
Dysk powstawał w trakcie wzrostu fragmentu obłoku o największym zagęszczeniu materii, umieszczonego w środku układu tzw. protosłońca, z jego zewnętrznych, równikowych obszarów. Moment pędu z wnętrza protosłońca przekazywany był na powierzchnię. Uzyskując odpowiedni moment pędu równikowe pierścienie odrywały się od protosłońca tworząc wirujący obłok protoplanetarny. Mechanizm przekazywania momentu pędu był efektywny — obecnie Słońce stanowiące ponad 99% całej masy Układu ma moment pędu stanowiący mniej niż 2% jego całego momentu pędu (98% stanowi ruch planet). Gdy temperatura we wnętrzu protogwiazdy osiągnęła 10 mln K, rozpoczęła się jądrowa przemiana wodoru w hel (tzw. spalanie wodoru). Słońce rozbłysło i proces zapadania zatrzymał się. Proces powstawania dysku protoplanetarnego o rozmiarze naszego Układu trwał prawdopodobnie około milion lat.
2. Kondensacja pyłu w różnych rejonach dysku.
Grubość dysku rosła z odległością od Słońca, a temperatura i gęstość malały. Materia stała (pył) z obłoku mogła ulec odparowaniu wewnątrz protosłońca. W dysku zachodził złożony proces ponownej kondensacji pyłu. W obszarze bliskim Słońca (wewnątrz orbity Marsa) temperatura była wysoka i mogły tam kondensować tylko cięższe pierwiastki i związki: tlenki wapnia glinu i tytanu, metaliczne żelazo i nikiel, glinokrzemiany litowców, tlenek żelaza oraz krzemiany magnezowo-żelazowe. Dalej, w zimniejszych rejonach, kondensowały także woda, amoniak i metan. To tłumaczy, dlaczego skład planet zmienia się z odległością od Słońca.
3. Opadanie pyłu w kierunku płaszczyzny centralnej.
Drobniutkie ziarna pyłu unosiły się w gazie i spotykając ze sobą łączyły się wskutek działania sił elektrostatycznych. W ten sposób utworzyły się większe ziarna materii stałej, których już gaz nie był w stanie unosić. Krążąc razem z dyskiem wokół Słońca ziarna powoli opadały ku płaszczyźnie centralnej zwiększając jednocześnie swoją masę w wyniku łączenia się z innymi ziarnami. Czas opadania był rzędu tysiąca lat. Rozmiary ziaren zwiększyły się z 10-5 cm aż do kilku cm.
4. Tworzenie się planetezymali.
W centralnej płaszczyźnie dysku powstała gęsta warstwa ziaren materii stałej. Gdy gęstość stała się dostatecznie duża, warstwa przestała być stabilna i uległa rozpadowi na wiele niezależnych fragmentów. Każdy taki fragment (zgęszczenie pyłu i ziaren) wędrował wokół Słońca, wirował wokół swojej osi i utrzymywał się w równowadze dzięki samograwitacji. Napotykając na inne zgęszczenia łączył się z nimi zwiększając swoją masę. Wreszcie masa fragmentu stała się tak duża, że samograwitacja spowodowała jego szybkie zapadanie się i powstanie stałej bryły o rozmiarach rzędu km, tzw. planetezymala. Etap ten trwał około 100 tys. lat.
5. Łączenie się planetezymali i powstanie planet.
Planetezymale były dostatecznie duże, aby ich wzajemne oddziaływania grawitacyjne stały się istotne. Największe z nich najszybciej wyłapywały mniejsze ciała i stawały się zarodkami przyszłych planet. Początkowo wzrastały powoli, potem, gdy ich masa zwiększała się, coraz szybciej; gdy większość ciał w ich obszarze oddziaływania uległa wychwyceniu, proces ten ulegał znowu spowolnieniu. W ten sposób powstały planety grupy ziemskiej i jądra planet wielkich. Gaz został wymieciony z Układu podczas fazy T-tauri (okresu intensywnego promieniowania Słońca). Jądra planet wielkich, ze względu na ich większą odległość od Słońca, zdążyły wychwycić część gazu stając się planetami gazowymi. Ten etap powstawania planet był najdłuższy i trwał około 100 mln lat.
Powstanie Układu Słonecznego — pytania.
Przedstawiony został ogólny schemat powstawania planet wokół pojedynczej gwiazdy. Zastosowanie go do naszego Układu wymaga odpowiedzi na szereg pytań. Oto najważniejsze z nich.
Dlaczego w pasie planetoid nie powstała planeta?
Prawdopodobnie Jowisz, znajdujący się najbliżej na zewnątrz pasa planetoid, uformował się najszybciej. Oddziaływania grawitacyjne Jowisza spowodowały wzrost prędkości planetezymali w rejonie planetoid. Zderzenia planetezymali zachodziły więc z dużymi prędkościami i nie powodowały ich łączenia, a raczej rozpad. Wiele planetezymali z rejonu planetoid i Marsa zostało ponadto przechwyconych przez Jowisz lub wyrzuconych poza Układ Słoneczny.
Jak powstały satelity planet (księżyce)?
Księżyce wokół planet wielkich powstały w podobny sposób jak rlanety wokół Słońca, tj. z dysków okołoplanetarnych, utworzonych z rozdrobnionej materii wychwyconej na orbity formujących się planet. Dwa małe księżyce Marsa są planetoidami, które weszły na orbitę tej planety. Najtrudniej jest wyjaśnić powstanie naszego Księżyca. Mógł on powstać w wyniku zderzenia z Ziemią ogromnego planetezymala, spowodowało ono wyrzucenie na orbitę okołoziemską części lekkiej materii płaszcza Ziemi, która skupiła się na orbicie tworząc Księżyc. Teoria ta tłumaczy też fakt, iż Ziemia ma dużą gęstość (większą niż Merkury i Wenus, choć jest dalej od Słońca), a Księżyc małą.
Jak powstały komety?
Jądra komet stanowią planetezymale lodowe powstałe między Saturnem a Plutonem. Wiele z nich zostało wyrzuconych z naszego Układu w wyniku oddziaływania grawitacyjnego formującego się Uranu i Neptuna. Część z nich na zawsze opuściła Układ Słoneczny, pozostałe krążą wokół Słońca w ogromnej od niego odległości 100 tys. jednostek astronomicznych, tworząc tzw. chmurę Oorta. Wskutek oddziaływań z bliskimi gwiazdami planetezymale lodowe mogą nurkować w nasz Układ Słoneczny stając się kometami.
Dlaczego Wenus i Uran wirują wokół swoich osi w przeciwną stronę niż inne planety?
Ruch orbitalny i wirowy planet wynika z pierwotnego momentu pędu obłoku protoplanetarnego. Uran prawdopodobnie uległ zderzeniu z wielkim ciałem, co spowodowało duże nachylenie (82°) jego osi obrotu do płaszczyzny orbity oraz zmianę kierunku wirowania. Kierunek ruchu wirowego Wenus można tłumaczyć przechwyceniem przez nią satelity, który krążył w przeciwną stronę i zmianą kierunku pod działaniem sił pływowych.